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Foreword

Note to the impatient reader: This chapter mainly covers background information on traffic
simulation. If you are more interested in the actual usage of the simulator PAMINA, please, proceed
to chapter 2 on page 6.

Most of the material presented in this manual was drawn from the Ph.D. thesis of the author. For
a more detailed discussion of all topics presented here, please refer to [40] which is available at

http://www.the-rickerts.de/mr/dissertation.en.html .

The author gladly welcomes any comments on the this manual or the thesis. Please, be aware that
the thesis was written in 1998, so terms such as ’now’, ’recently’, or ’in the future’ have to seen as
relative to this.

Traffic Simulation

Recently, there has been increased interest in microscopic traffic simulations worldwide. In contrast
to earlier implementations which could only handle small street networks in reasonable time, current
state-of-the-art implementations exploit the architecture of modern computer systems to increase
their performance considerably. Also, there has been a shift away from macroscopic underlying
traffic models to simple microscopic ones such as the cellular automaton approach.

In this chapter we start out by giving a short overview of existing micro-simulations that are able
to execute route-sets within regional street networks.

1.1 Simulation models

Currently, there are several commercial and non-commercial traffic simulation packages available.
Some [34, 35] are based on macroscopic traffic models, which neglect individual characteristics of
vehicles including route-plans. Although their computational performance is usually higher than
microscopic models, they lack the ability to run activity-based simulations based upon route-plans.
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In the following, we will outline those micro-simulations capable of executing individual route-plans.
For a more comprehensive survey of micro-simulations see [48].

NETSIM [37] was originally developed for the Federal Highway Administration. Later, it was inte-
grated with TRAF simulations system resulting in the new common name TRAF-NETSIM. It puts
special emphasis on handling stochasticity of driver decisions correctly, since random driver behav-
ior at the microscopic level is known to have a considerable impact on aggregated measurements.
In one test-bed [20] the whole core street network of Austin (TX) was simulated on a CRAY vector
computer.

INTEGRATION [1, 15] is a microscopic traffic-simulation developed at the Queen’s University
in Kingston, Canada. Its dynamics are based upon a car-following model with a macroscopic
calibration for the desired free speed, the speed at capacity, and the jam density of each link. The
network capabilities of the simulation include among other things lane-changing, incidents, freeway
intersections, turning movement restrictions, traffic signals, loop detectors, and vehicle probes.

DYNASMART (=Dynamic Network Assignment Simulation Model for Advanced Road Telematics,
see [9, 18]) is a micro-simulation driven by individual route-plans. It provides the capability to
explicitly model trip maker en-route decisions in response to online information.

DYNEMO [45] represents a special case within this list of traffic-simulations. In principle, it is a
macroscopic model, since it uses segmented links with link performance functions. The necessary
input for these functions such as density and mean velocity, however, is retrieved by aggregating
over individual vehicles. Therefore, DYNEMO is capable of processing route-plans as every other
model presented here.

TRANSIMS [30, 47] is a traffic research project funded by the American Federal Highway Admin-
istration [32]. It comprises modules to (a) generate a synthetic population from census data, (b)
generate activities from the synthetic population, and (c) generate a route-set from the activities.
The simulation itself, which is also based upon the Nagel-Schreckenberg model, was parallelized
using workstation clusters with a distributed memory programming model.

The traffic research effort FVU-NRW [31] funded by the German federal state Nordrhein-Westfalen
uses a modular traffic simulation called PLANSIM-T [17]. Its structure corresponds to that of
TRANSIMS. Since privacy laws in Germany largely restrict access to census data for research
purposes, route-sets are more likely to be obtained from origin-destinations matrices. The ma-
trix is computed from homogeneous groups of population distributed over the simulation area.
Actual traffic counts are used to calibrate the OD-flows, which currently still poses a problem
[49]. The micro-simulation features three built-in underlying traffic models: (a) the original Nagel-
Schreckenberg model [36], (b) a refined continuous model described in [19], and (c) a low resolution
queuing model, which replaces incoming lanes by queues. PLANSIM-T uses the thread program-
ming paradigm on shared memory multi-processor computers.

The city traffic simulation CASim [8, 14] developed at the university of Duisburg, Germany (also
within the framework of the FVU-NRW) uses the original Nagel-Schreckenberg CA. The simulation
can be driven by both turn counts at intersections and individual route-plans. Furthermore, it can
be influenced by online traffic count data which is used to perform dynamic re-routing.
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feature PAMINA I PAMINA II PAMINA III

individual speed limit no no yes
transfer rates yes no no
route-plans no random yes
traffic signals no no yes
message passing library PVM PVM PVM/MPI
parallelization direct Toolbox 1.0 Toolbox 2.0
off-line load balancing yes yes yes
off-line feedback no no yes
online load balancing no yes no

Table 1.1: Overview over PAMINA versions

The PARAMICS [7, 33] simulation developed at the Edinburgh Parallel Computing Center uses
(in its original version) a Connection Machine CM-200. New releases have been ported to message-
passing systems like the CRAY T3D/E.

1.2 Overview of PAMINA versions

Using the CA model developed by Nagel and Schreckenberg as a starting point, we extended the
model to include traffic in street networks. The goal was to maintain the simplicity of the CA
model as far as possible by using a few building blocks based upon the original model. We have
implemented three versions (see Table 1.1) of the micro-simulation PAMINA which we would like
to describe in this chapter.

Note that only the most current version of the traffic simulator (PAMINA III) is available.

The first version PAMINA I [38] already used the multi-lane extension of the Nagel-Schreckenberg
CA to simulate traffic on links. Vehicles are generated using sources with time-dependent insertion
rates. At each of the traffic nodes (e.g. junction or ramp) vehicles are transferred to their new
respective destination links according to time-dependent transfer rates. In this respect it is similar
to CASim. There is, however, no calibration of the transfer rates as in the traffic simulation of
the city traffic of Duisburg. Vehicles are removed from the network at sinks with time-dependent
absorption rates. The implementation used a distributed memory approach with PVM as the
message passing library.

The second version PAMINA II focused on the computational aspects of load-balancing. In contrast
to PAMINA I, which used a static load-balancing scheme, PAMINA II used online measurements
of execution time to balance the computational load on all CPUs of the parallel computer system.
It was also used as a feasibility proof for the simulation of the whole Autobahn network of Germany
in real-time [43].

The third and current version PAMINA III shifted the focus to the actual application of the traffic
simulation. The network model was extended to include simple signalized intersections. Also,
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vehicles now follow individual routes on their trips through the network instead of obeying transfer-
rates or random routes. PAMINA III (or simply PAMINA in the following) will be described in
detail in the following chapter.

The main objective of PAMINA is to execute a route-set (a list of route-plans) in a street network.
Each route-plan is defined by a source, a destination, a list of intermediate net points, and a
departure time. After a vehicle has been instantiated1 at the given departure time, it will be
inserted into the simulation network at the origin. It will then execute the route-plan until it
reaches its destination. Finally, it will be removed from the system after statistics about its actual
travel time have been collected.

A simulation run is initiated by supplying a map defining the geometry of the street network and
the route-set. Vehicles will be instantiated according to their departure times until all routes have
been processed. The simulation will continue until a given percentage of all instantiated vehicles
have reached their destination. For the simulation runs presented in the example section (2.4) of
the next the simulation time is set to a fixed interval (here 7 hours).

1In object-oriented programming languages the term instantiate is used for the dynamic creation of a memory
object (e.g. vehicle). These objects usually have a limited life-time before they are deleted or destroyed.



Chapter 2

Simulator Pamina III

2.1 Network elements

One of the first applications of the network simulation PAMINA was to simulate the whole Auto-
bahn network of Germany in real-time, which is to say that one simulation second takes as long as
one wall-clock second. The network was given as a graph with nodes and links which had to be
represented in the simulation. In the following sections we will describe this network representation.

The network representation used in PAMINA is a graph in which each intersection is represented
by a node1 and each street segment between intersections corresponds to two edges2. Moreover,
there are nodes defined by the natural boundaries of a road network with node degree one, called
terminators, and additional nodes with degree two where vehicles can enter or exit the network,
called ramps3. This network is usually supplied in two sets of objects: (a) the set of nodes, each
of which has a unique number (id) and the geometric location of the object, given in rectangular
coordinates relative to an arbitrary, but fixed point, and (b) the set of edges, each of which has two
references (by id) to nodes and optional information such as name, number of lanes, or speed limit.

2.1.1 Street segments

The directed connection (edge or link) between two nodes is represented as a grid equivalent to the
model by Nagel/Schreckenberg and its two-lane extension. The characteristics length4, speed limit,
and number of lanes are used to adapt the CA model. The size of the grid is computed by using
the grid-site length of 7.5 [meter] as a unit.

1Also known as vertex.
2A segment can correspond to one edge or two edges depending on whether the two directions are equivalent,

or not. PAMINA uses the latter, even if all characteristics of both directions are identical, since this symmetry is
broken during simulation, anyway.

3The segments feeding the ramps are not part the network. Therefore they do not increase the degree of a ramp.
If the map were extended to include lower hierarchies, ramps would also have degrees larger than two.

4The length of a street segment is either explicitly given or derived from the Euclidean distance of the two nodes.

6
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It is important to note that the characteristics mentioned so far are constant for the whole segment.
Typical details like additional turning lanes in front of intersections may be modeled by inserting
additional nodes to split a given segment and assigning different parameters to the various parts.

For the convenience of the reader we would like to outline the single lane CA model5 introduced by
Nagel and Schreckenberg. The system consists of a one dimensional grid of L sites with periodic
boundary conditions. A site can either be empty, or occupied by a vehicle of velocity zero to vmax.
The velocity is equivalent to the number of sites that a vehicle advances in one update — provided
that there are no obstacles ahead. Vehicles move only in one direction. The index i denotes the
number of a vehicle, x(i) its position, v(i) its current velocity, vd(i) its maximum speed, pred(i)
the number of the preceding6 vehicle, gap(i) := x(pred(i)) − x(i) − 1 the width of the gap to the
predecessor. Note that in the original model all vehicles had the same maximum velocity vmax. We
now allow for different desired velocities vd(i) to include an inhomogeneous fleet. At the beginning
of each time-step the rules are applied to all vehicles simultaneously (parallel update, in contrast
to sequential updates which yield considerably different results). Then the vehicles are advanced
according to their new velocities.

• IF v(i) < vd(i) THEN v(i) := v(i) + 1 (S1)

• IF v(i) > gap(i) THEN v(i) := gap(i) (S2)

• IF v(i) > 0 AND rand < pd(i) THEN v(i) := v(i) − 1 (S3)

S1 represents a constant acceleration until the vehicle has reached its maximum velocity vd. S2
ensures that vehicles having predecessors in their way slow down in order not to run into them. In
S3 a random generator is used to decelerate a vehicle with a certain probability modeling erratic
driver behavior. The free–flow average velocity is vmax − pd (for pd 6= 1).

Of course, in a realistic setup such as PAMINA the periodic boundary conditions will be replaced
by network elements such as intersections (see 2.1.2) or parking accessories (see 2.1.3).

Lane changing

Since a realistic fleet is usually composed of vehicle types having different desired velocities, the
single lane model is not capable of modeling realistic traffic behavior. Introducing such different
vehicle types in the single lane model only results in platooning with slow vehicles being followed by
faster ones and the average velocity reduced to the free–flow velocity of the slowest vehicle [6, 23].

We introduce a two-lane model [38, 42] consisting of two parallel single lane models with periodic
boundary conditions and four additional rules defining the exchange of vehicles between the lanes.
The update step is split into two sub-steps:

5Wimmershoff provides an online demo for the single-lane CA model [50].
6A precedes B. in this context means that A is followed by B
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lo,back lo

E E E E E E E E EEE
OO O OO

l7.5 [m]

Figure 2.1: Two-lane CA model: geometry describing lane-changing rules — The

vehicle (denoted by a filled circle) will change to the right (lower) lane if any of the sites marked with “O” is

occupied and the sites marked with “E” are empty. The vision ranges are l for look-ahead in the current lane, lo

look-ahead in the other lane, and lo,back for look-back in the other lane.

1. Check the exchange of vehicles between the two lanes according to the new rule set. Vehicles
are only moved sideways. They do not advance. Note that in reality this sub-step regarded
by itself is infeasible since vehicles are usually incapable of purely transversal motion. Only
together with the second sub-step do our update rules make sense physically.

This first sub-step is implemented as a strictly parallel update with each vehicle making its
decision based upon the configuration at the beginning of the time-step.

2. Perform independent single lane updates on both lanes according to the single lane update
rules. In this second sub-step the resulting configuration of the first sub-step is used.

A somewhat generic starting point for modeling passing rules is the following: (T1) The driver
looks ahead if somebody is in his way. (T2) The driver looks on the other lane if the situation is
better there. (T3) The driver looks back on the other lane if somebody would be obstructed by
the lane change.

Technically, we keep using gap(i) for the number of empty sites ahead in the same lane, and we
add the definitions of gapo(i) for the forward gap on the other lane, and gapo,back for the backward
gap on the other lane. Note that if there is a vehicle on a neighboring site both return -1. The
generic multi-lane model then reads as follows. A vehicle i changes to the other lane if all of the
following conditions are fulfilled (see Figure 2.1):

• gap(i) < l (T1),

• gapo(i) > lo (T2),

• gapo,back(i) > lo,back (T3), and

• rand() < pchange (T4).

l, lo, and lo,back are the parameters which decide how far a driver looks ahead in his own lane, ahead
in the other lane, or back in the other lane, respectively.
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The most important parameters of the two-lane model are symmetry, stochasticity, and direction
of causality. In Table 2.1 we associate the parameters of our rule set with the previously mentioned
characteristics.

characteristic yes no

symmetry T1 for L→R no T1 for L→R
stochasticity probc < 1 probc = 1

backward causality lo,back > 0 lo,back = 0

Table 2.1: Characteristics of the two-lane CA rules

Symmetry: The rule set defining the lane changing of vehicles can be both symmetric and asym-
metric. The symmetric model is interesting for theoretical considerations whereas the the
asymmetric model is more realistic.

Stochasticity: The single lane model proved that a strictly deterministic model is not realistic.
The model did not show the desired spontaneous formation of jams. In the case of the two-
lane model the lack of stochasticity in combination with the parallel update results in strange
behavior for slow platoons occupying either lane: since none of the vehicles has reached its
maximum velocity and all evaluate the other lane to be better there is collective change
sidewise which is usually reversed over and over again until the platoon dissolves or the
platoon is passed by other vehicles.

We introduce stochasticity into the two-lane rule set to reduce the effective number of lane
changes and thus dissolve those platoons.

Direction of Causality: In the single lane model a vehicle only looks ahead (= downstream =
in the direction of vehicle flow) so that causality can only travel upstream (= in the direction
opposite of vehicle flow). A reasonable lane changing rule must include a check of sites
upstream in order not to disturb the traffic of the destination lane. This would result in
causality traveling downstream.

Active Parameters

In PAMINA III we usually use l = v+1, lo = l, lo,back = vmax = 5, pchange = 1, and pd = 0.5. Both l
and lo are roughly proportional to the velocity, whereas looking back is not. lo,back depends mostly
on the expected velocity of other cars, not on one’s own.

In the symmetric version of this model, cars remain in their lane as long as they do not “see”
anybody else. If they see somebody ahead in their own lane (i.e. gap < v +1), they check the other
lane to see if they can switch lanes and do so if possible. Afterwards, if they are satisfied, they
remain in this lane until they become dissatisfied again.

In the asymmetric version, cars always try to return to the right lane, independent of their situation
on the left lane.
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Multilane Behaviour

For each pair of neighbouring lanes the lane changing rules were taken from Section 2.1.1. If a
link has more than two lanes, we enforce a left–to–right lane-changing priority. This prevents two
vehicles from moving to same common site in case both have to change lanes according to their
lane changing rule set.

Speed Limit

In contrast to the original CA model which assumed a maximum speed limit of approximately 120
km/h (freeway traffic), the speed limit within a city is usually lower. In order to match individual
speed limits of the simulation area, for each segment we introduced a CA speed limit

vsl = bvreal
sl /lsite + 0.5 + pdc

where vsl is the CA speed limit given in sites per time-step, vreal
sl the real speed limit given in meters

per second, lsite the CA site length given in meters, and pd the deceleration probability of the CA
rule set. Moreover, vsl is forced to be in [1 . . . vmax]. Note that pd is used to compensate for its
reduction of the average free-flow velocity to vmax − pd. Using the speed-limit as a reference for the
free speed is based upon the assumption that most drivers will go as fast as permitted. Depending
on regional driving habits, the free speeds may have to be adjusted to match actual measurements.

2.1.2 Simple city intersections

In contrast to PAMINA II which features a detailed representation of freeway junctions PAMINA III
mainly uses a simple intersection type. For city traffic there is usually no need to provide for transfer
lanes since the extent of city intersections can be assumed to be zero7. Therefore, the structure
can be kept very simple. Figure 2.2 depicts the geometry of a city intersection. All incoming lanes
to each segment are equivalent. At the very end of each incoming lane vmax sites are scanned for
vehicles before the usual rules of motion are applied. During each time-step, at most one vehicle per
incoming lane of the source segment can be moved to one of the insertion sites of the destination
segment. If possible, the same lane is used on the destination segment. If that is not feasible and if
the destination segment has fewer outgoing lanes than the incoming segment has incoming lanes,
the vehicle is inserted into the leftmost lane. If that site is occupied, the next neighboring site off
to the right is checked until a vacant site is found or the right-most lane is reached. Note that the
scanning of the incoming lanes is always done beginning at the site nearest to the intersection. Thus,
the order of the vehicles with respect to each other is not changed. In order to ensure unbiased
processing of all incoming lanes, the scanning is done in a round-robin fashion with respect to
consecutive time-steps.

For a vehicle approaching the intersection there are two alternatives: either it is absorbed from the
scanning area and inserted into the destination segment or it proceeds according to its CA rules

7In TRANSIMS it takes a vehicle at about one time-step to transverse an intersection.
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absorption

insertion

block

Figure 2.2: Geometry of a city intersection — In case of the left turn depicted above, the vehicle

on the left lane has no corresponding lane on its destination link. It will be inserted into the leftmost lane.

of motion. Due to blocking at the end of the lane (or earlier due to other preceding travelers)
it will eventually stop. This behavior is important to model the spill-backs in real world traffic.
The queues are resolved as one would expect: As soon as the situation on the destination lane(s)
improves, vehicles are removed one by one starting at the site nearest to the block. Note that a
vehicle may be blocked by other vehicles (having a different destination) although its destination
segment is vacant. This effect may cause grid-locks which will be discussed in Section 2.2.2.

Approach and turning behavior

In contrast to other traffic simulations with resolution at city-street level, we do not model a special
behavior for vehicles while approaching or transversing intersections. In our implementation all
incoming lanes are equivalent. This was done for two reasons. First, modeling detailed approach
and turning behavior requires extensive geometric information which is often not available or not
consistent. Second, the current rules of motion show a quickly decreasing lane-changing probability
as soon as the density exceeds a certain threshold. This is mainly due to a strict ’look-back’ rule
which checks for following traffic on the neighboring lane. In contrast to freeway conditions, where
this rule maintains the desired traffic jam waves, here, it would prevent proper lane-changing. This
again would result in vehicles queuing up, since they could not change to their respective turning
lanes [30].
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Traffic lights

Traffic lights are modeled by activating the scanning mechanism for the duration of the green phase
Tg and deactivating it for the length of the non-green-phase Tr (which includes both the red phase
and transition phases). Since there is only one phase per incoming segment, any direction-specific
phasing information is averaged over all directions weighted by the number of active lanes into the
respective direction. Let i be the incoming segment, j the outgoing segment, Tg(i, j) the length of
the green phase from i to j, and l(i, j) the number of lanes going from i to j. The overall green
phase will be computed as

Tg(i) =

∑

j l(i, j)Tg(i, j)
∑

j lg(i, j)
.

The overall red phase Tr(i) is computed similarly using all Tr(i, j). Note that due to this averaging,
the complete phase cycles Trg(i) = Tg(i)+Tr(i) (green phase + red phase) of the incoming segments
may differ from each other, resulting in a continuous phase shift. This is different from real world
traffic light installations where the starting time is usually defined by taking a multiple of Trg(i)
and adding a relative offset.

Interferences

Two types of interference can occur at an intersection: (a) vehicles that have to obey right of way
must wait for gaps in the crossing or oncoming traffic stream, and (b) vehicles that have right of
way are obstructed by others blocking the intersection. In the simplest version of our intersection
neither of these interferences are handled. However, it is simple to force a reduced throughput
through the intersection by examining the overall occupancy of the vmax last sites of all outgoing
segments and introducing an additional transfer probability. This probability would have a value
of one if all sites in the examined area are vacant, a value smaller than one if all are occupied, with
a functional (possibly linear) transition between the two extremes.

Sources and sinks

In contrast to a freeway junction, a city intersection may be a vehicle source and/or a vehicle sink.
This is required for route-plans which start or terminate at a node. In this case the absorption
range at the end of the incoming segments (see Figure 2.2) will be used to absorb vehicles that
have reached their final destination. The insertion sites will be used to insert new vehicles.

2.1.3 Parking accessories

Parking accessories are equivalent to sources and sinks, only that they are located right on the
link. For the simulation of city traffic they serve as insertion (deletion) points for all trips starting
(ending) in driveways or parking lots on that link.



2.1. NETWORK ELEMENTS 13

Vehicles can be inserted at an accessory if more than 2 consecutive sites are vacant. This is done
to guarantee that during heavy congestion not all gaps in the link are filled by vehicles from the
accessory source queue.

2.1.4 Route-sets

The first attempt to include route-sets into a medium scale traffic simulation was done in one of
the early versions of TRANSIMS [3]: the interstate traffic of the city of Albuquerque was simulated
on a single workstation to show the general feasibility of this approach. Nagel [24, 27, 29] used
a parallel computer with two CPUs to run a parallel net simulation based upon the single-lane
CA with individual route-plans. He examined iterative route-selection behavior for a group of
drivers traveling through the network. The NRW-FVU, TRANSIMS, and PARAMICS groups are
currently designing or already using large-scale traffic simulations that include route execution.
INTEGRATION [20] and DYNASMART [18] have also been used with individual route-plans,
albeit at a smaller scale.

For PAMINA, route-sets represent the third major input for the simulation beside nodes and edges.
Each route-plan contains information about the node id of the origin, the scheduled departure time-
step from the origin, the estimated travel time in simulation time-steps, a list of node id including
the destination as its last entry, and optional vehicle data.

PAMINA expects the routes to be sorted according to their departure time-step. Thus the evalua-
tion of the route-plan is reduced to the following scheme: at every time-step routes are sequentially
read until a departure time-step is found that is larger or equal the current time step. For each
route a vehicle is created and loaded with that route. The vehicle is appended to the insertion
queue of the source associated with the given origin id. If there is more than one source per id (e.g.
ramps or accessories) also the second node id of the route-plan is scanned to determine the outgoing
segment and thus the specific source. Note that the scheduled time of insertion may differ from
the actual time of insertion, since the source can only add vehicles to the grid if there are vacant
sites. During intervals of high insertion rates there will be a certain number of vehicles waiting (or
’pending’) in the source queues.

2.1.5 Levels of fidelity

The principal goal of a CA traffic simulation must be to keep the rule-set as small as possible. This
has two advantages: First, by keeping the number of parameters small, the probability of artifacts
is reduced and the model can be validated more easily. Second, simple rule-sets usually result in
efficient coding which is essential for fast delivery of results — considering the before-mentioned
need for statistical averaging.

PAMINA can be run with different model fidelities regarding characteristics of street segments
(speed limit, see 2.1.1) and intersections (traffic-lights, see 2.1.2). For each fidelity a specific name
is used which is listed in Table 2.2. For the low-fidelity (lf) model both traffic lights and speed-limits
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were deactivated. In the speed-limit (sl) model only traffic lights were activated, in the traffic-lights
(tl) model only traffic-lights. The high-fidelity (hf) model contained both features.

short name lf sl tl hf rl
long name low fidelity speed limits traffic lights high fidelity reduced lights

speed limit no yes no yes yes
traffic lights no no yes yes qr

Table 2.2: Parameters of simple city simulation — Parameters (bottom rows) defining the fidelity

(right columns) of the simulation: In case of an active speed limit the maximum velocity vmax is reduced from its

original value of 5 to a segment-specific value. In case of active traffic lights, the transfer at intersections is decreased

by introducing periodic red phases during which some of the incoming segments are blocked. Reduced non-green phases

(qr) are discussed in Section 2.2.3.

2.2 Examples

2.2.1 Simulating city traffic using precomputed Routes

As a first test [41] for PAMINA with realistic route-plans, we used a preliminary route-set generated
for TRANSIMS case-study. We used two maps (see Figure 2.3): the complete Dallas/Fort Worth
area and a small excerpt of the latter called study-area. The study-area map comprises all streets
except small ones in residential areas and similar areas. The large map further contains all minor
and major arterials for Dallas and all major arterials for Forth Worth.

The plan-sets which were available at that time contained only trip departure times between 7 am
and 10 am of which we selected those between 7 am and 8 am as the period of interest. Therefore,
we started the simulation at 7 am and let it run at least until 8 am. After that, the simulation either
terminated when (a) 99% of all route-plans had been executed, or (b) a grid-lock was detected.
In this context we assume the system to be grid-locked if the number of vehicles in the system is
constant for more than 600 time-steps. For the CA model we used the deceleration probability of
pd = 0.3 in all simulations.

For each simulation run all plans can be regarded as static. For the time being, we do not perform
any online re-routing. A plan-set is generated from an activity set consisting of a source plus a
departure time on the one hand and destination on the other hand. The plan-set used for the study
presented here (also referred to as plan-set 11) is a very preliminary plan-set which was generated
in the course of the Dallas/Fort Worth case-study of TRANSIMS. Work on plan-sets in the context
of the same case-study can be found in [21, 26] and in Section 2.4.

All plan-sets are computed for the whole Dallas/Forth-Worth area which means that all routes have
to be restricted to the study-area if only that portion of the map is simulated. The truncation of
the plans is done in a straight-forward way: any route that contains at least one segment within the
study-area will be part of the restricted plan set. Its departure will be delayed by the amount of
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Study Area

Grid-Lock View

Dallas / Fort Worth

Figure 2.3: Map of Dallas / Fort Worth — The different shades of gray in the Dallas / Fort

Worth map correspond to the mapping to different processors of the parallel computer topology. Note that

the resolution decreases with growing distance from the study-area. For the simulations in this chapter the

study-area itself contains only major and minor arterials. The small rectangle marked as Grid-Lock View

can be seen in Figure 2.8.
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time that the vehicle would spend outside the study-area before it reaches the first segment within
the simulation area. For all edges transversed up to entry, we use the cruising velocities assumed
by the planner (also see 2.5.2).

After the start of the simulation, route-plans are executed as follows: (a) At the time-step given
by the departure-time, a vehicle is created at the departure node (source) of the route. (b) The
vehicle is inserted into a queue associated with the source. (c) Each time-step the queue is scanned
for pending vehicles. If possible, the vehicle is removed from the queue and inserted into the first
segment from where it starts executing its route-plan. (d) As soon as it reaches the destination,
the vehicle is removed from the segment. The travel time is recorded for statistical evaluation.

Note that all vehicles try to execute their route-plans independent of the actual traffic conditions
that they encounter along their way. In heavily congested areas, vehicles often spill back across
intersections because they cannot enter their next destination segments. This current approach
can result in complete grid-locks of the simulation area, which cannot be resolved with the current
rule-set. This artifact will be discussed next.

During the simulation we keep track of: the number of vehicles inserted so far, the number of
vehicles currently in the network, and the number of vehicles that have reached their destination.
Upon arrival of each vehicle we store the estimated travel time (computed by the router beforehand)
and the actual travel time. These times can be compared to check the prediction quality of the
router.

Except for the curves depicting the number of vehicles in the study-area (Figure 2.6), we con-
sidered only vehicles that arrived before time-step 1800. Also, all curves have been aggregated
over 10 simulation-runs (using different random seeds) and normalized according to the respective
number of vehicles that have reached their destinations before time-step 1800. Moreover, the area
underneath each curve has been normalized to one.

Delay of arrival

Since each vehicle’s actual travel time tactual is recorded upon arrival, we compute the distribution
of relative delay d

d =
ttrav
act − ttrav

sched

ttrav
sched

with respect to the scheduled trip time ttrav
sched forecast by the router. Note that negative values

denote early arrivals. Figure 2.4 shows the results for plan-set 11 in all fidelities. It is obvious
that in mode lf (due to the missing speed limit) route-plans are executed much too fast. There are
hardly any delays at all. In modes sl and tl the peak is already shifted towards zero delays but still
biased. Mode hf generates a distribution which peaks almost exactly at zero delay. The average,
however, is shifted towards positive delays. This can be verified in Figure 2.5, which displays the
running average (over the latest 1000 vehicles) of the relative delay. In the uncongested regime the
travel times of the micro-simulation are shorter in general than what the planner had expected.
In highly congested situations, though, travel times in the micro-simulation are longer than the
planner predicted.
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Figure 2.4: Distribution of relative delays for plan-set 11 — The low fidelity model lf shows

a characteristics peak at negative relative delays since vehicles are not delayed by either speed-limit or traffic-lights.

Higher fidelities have their peaks shifted to positive delays.
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Figure 2.5: Running average of relative delays for plan-set 11 — The curve for fidelity sl is

closest to zero relative delay throughout the simulation. Fidelities with activated traffic lights have a rising tendency.

This is caused by growing congestion inside the study-area: The number of vehicles never reaches a plateau. The

low fidelity simulation executes routes to quickly resulting in large negative delays.
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Figure 2.6: Vehicles in study-area for plan-set 11 — While the vehicle count reaches an equi-

librium for fidelities lf and sl, the other two fidelities grid-lock.

We have to point out that it cannot be the goal of the dynamic micro-simulation to reproduce the
static results forecast by the planner. These comparisons only serve as a consistency-check. It is
to be expected that results of the micro-simulation will differ considerably, e.g. in places where the
implicit aggregation of the planner smoothes over sudden peaks in traffic load.

2.2.2 Reproducibility and grid-locks

Since the CA model contains a stochastic element, we receive a unique evolution of the simulation
for each seed of the random number generator. In a sub-critical system the network is able to
transport all vehicles (albeit with delay) so that all runs will look similar on a macroscopic level. In
a system with a network throughput incapable of handling the loading, the system will most likely
grid-lock (see below). Between the two extremes we find a regime in which the specific configuration
may either block or not block. Figure 2.6 depicts the number of vehicles which are in the study-area
at a given time-step. Fidelities lf and sl belong to the sub-critical regime. Both curves reach a
plateau (at 4500 vehicles after time-step 500 for lf and at 10,000 vehicles after time 2500 for sl)
after an initial loading phase representing an equilibrium between the insertion and deletion rates
of vehicles. After the loading phase all remaining vehicles are discharged within 400 time-steps for
lf and within 900 time-steps for sl.

Modes tl and hf belong to the super-critical regime. They never reach an equilibrium between
insertion and deletion during the loading phase; and the plateau after the loading of the network
is due to grid-lock.

See [4] for a similar (albeit much smaller scale) investigation on the relation between network
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before dead-lock after dead-lock

Figure 2.7: Geometry of a grid-lock — Left: Just before a grid-lock situation. Right: The grid-lock

was caused by vehicles which are required to make right turns. The first vehicle of each grid is waiting for the other

vehicle to leave the side. Since this dependency is circular, it cannot be resolved anymore.

loading and network throughput.

Grid-locks

In this simulation a grid-lock situation can be determined by a horizontal line after time-step 3600
(e.g. the end of vehicle insertion). This is caused by closed loops in the traffic network in which
all sites are occupied. Similar grid lock situations were reported in [13, 26]. Figure 2.7 depicts a
simplified intersection. In the left half, traffic is already dense, though not grid-locked. Due to high
demand and the red-phases at the intersection, the segments of the loop are no longer cleared. In
the right half the whole loop is blocked: the first vehicle in each lane is forced to make a right turn
into another lane which is also blocked. This phenomenon (in its strict form) cannot be seen in
real-world traffic, because drivers move out of the lanes and pass on the on-coming lane or they
abandon their current route and choose a detour. Figure 2.8 shows a screen-shot of a simulation run
with plan-set 11 in mode hf. Vehicles are represented by dark dots, lane boundaries by grey lines.
Right at the center, there is a small grid-locked loop blocking traffic from all incoming directions.

2.2.3 Reduced non-green phase length

We have encountered cases of sub-critical and super-critical loading of the network. Although the
respective models are defined by different types of rule-sets, they can be regarded as two specific
cases of a more general rule-set (called rl) in which in the effective red-phase Tr,eff is computed
by multiplying the original phase-length Tr by a certain factor qr ∈ [0 . . . 1]. Consequently, qr = 0
represents mode sl while qr = 1 represents mode hf.

We conducted several runs for different values of qr between 0 and 1. Both Figures 2.9 and 2.10
show a smooth transition between modes sl and hf (for 0.6 and 0.65 blocking and non-blocking
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Figure 2.8: Grid-lock in study-area (plan 11, fidelity hf) — The screen shot shows a grid-lock

configuration found while executing plan-set 11 at high fidelity. The location of this excerpt within the study-area

can be seen in Figure 2.3.
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Figure 2.9: Distribution of relative delay of plan-set 11 (different qr) — The distribu-
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representatives were chosen) as far as delay and trip duration are concerned. Values below 0.6
show a secure sub-critical (no grid-locks), and values above 0.65 a secure super-critical behavior.
For 0.6 and 0.65 the system has a certain chance of reaching a grid-lock (1 out of 10 runs for
qr = 0.6 and 5 out of 10 for qr = 0.65), which can better be seen in Figure 2.11. Figure 2.12 depicts
the number of vehicles after the loading phase and at the end of simulation as a function of qr.

A similar effect was reported for simple 2-dimensional grid models [12, 16, 22], except that in
these studies the overall density was changed instead of the efficiency of the network components.
Intuitively, the grid-lock effect seems to be the same. Further investigations will be necessary to
understand in how far simple models on a 2-dimensional grid can indeed offer insight for real-world
city traffic, which is happening in 2-dimensional space but is composed of traffic on 1-dimensional
links.

2.3 Iterative Route Adaptation

2.3.1 Using origin-destination matrices

Instead of using origin-destination matrices derived from unreliable and incomplete traffic flow
counts, another approach was chosen for TRANSIMS [46]. Based on census data8, artificial house-
holds will be created to match the statistical properties of the original census [5]. Each of these
households will have a family with members requiring trips (such as home-to-work or work-to-
shopping) to different places in the network. In this approach, a combination of trip origin, trip
destination, and trip departure time is called an activity. The set of all activities for a given time
period and area is called an activity list. This list can be regarded as a detailed origin-destination
matrix that has not been aggregated into time-bins. Note that, for the results presented here, all
route-sets relating to TRANSIMS are still based upon origin-destination data, and not on activity
lists.

Initial results from the TRANSIMS case-study [26] reveal that not only the route-sets, but also
the activity lists, will be influenced by the results of the micro-simulation. This feedback, however,
takes place on a different time-scale. Instead of changing route choice on a day-to-day basis, changes
to the activity lists rather reflect changes in when and in which order trips are planned. Drivers
facing the same congestion every day will eventually choose a different departure time, combine
several trips into one, or change this trip to another day of the week.

2.4 Truly dynamic assignment with simulation feedback

Nagel and Barrett used iterative re-planning for the TRANSIMS case-study [26]. In the remaining
portion of this chapter we will concentrate on this iterative approach in which the micro-simulation

8This approach may cause difficulties in some European countries where census data is not available for research
purposes, even in the strongly simplified form used for TRANSIMS.
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Figure 2.13: Iterative assignment with simulation feedback — For iteration i + 1 the fraction

fr of the previous route-set is re-planned by the router using link travel-times of iteration i. The remaining fraction

1−fr is simply reused. Before the route-set is fed into the simulation it is clipped to the boundaries of the study-area.

and the planner modules are executed in turns to generate a self-consistent route-set. In TRAN-
SIMS, the planner module uses the link travel-times of the previous simulation run to re-plan a
certain fraction of the previous route-set (refer to Figure 2.13). This repeated planning process
mimics the decision process observed for a fleet of human drivers in which most drivers rely on the
routes they used last. The remaining fraction of drivers, however, try to find a new route according
to the latest information about the performance of the street network. Since both the demand coded
in the origin-destination matrix and the travel-time feedback are dynamic, the iterative adaptation
with simulation feedback can be regarded as a truly dynamic assignment.

2.4.1 Finding the shortest path

The main component of the router is the shortest path algorithm. For a given source, departure
time, and destination the router tries to find a route which imposes the least “costs” on the driver.
The usual approach is to define time-dependent link costs ctrav

j (i) (also called weights) for each link
j and each time-bin i. As mentioned before, costs can be a combination of travel-time, distance,
and financial costs (such as tolls). They may also include preferences for certain street types (such
as scenic roads) or prohibitions (trucks through residential areas). Therefore, a better expression
for the shortest route would be the minimum cost route.

In principle, each driver has an individual subjective view of the costs of a link depending on his
financial and social background. It is possible that two drivers choose different routes because
their link costs vary considerably, and neither of the routes has to be the shortest route (measured
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as the sum of the Euclidean lengths of the links) or fastest route (measured as the sum of travel
times on the links). For the work presented here, however, we regard the whole fleet of drivers
as homogeneous and use the link travel time as the only cost factor. This may cause certain
instabilities because minor changes in link travel-times may result in many drivers modifying their
routes collectively. Nagel [26] reports a positive effect when a 30%-noise factor was added to the
original cost function to create an artificial individual view of the network.

Once the link costs are defined, there is a wide variety of algorithms available to compute an exact
solution of the minimum cost route. Among those, Dijkstra’s algorithm (see i.e. [2]) is probably the
most commonly used. Variations of the original algorithm try to improve the run-time performance
depending on specific characteristics of the cost functions and the underlying graph (see [10]). In
the case of a street network which is basically planar and the number of edges E is approximately
as large as the number of nodes N (except for a constant factor), Dijkstra’s algorithm has a
complexity of O(N log N) for the computation of all minimum cost paths from one source to all
other destinations in the network. This version will be used in this chapter within the router
module.

2.5 Using PAMINA for truly dynamic assignment

At this point we will use the micro-simulation PAMINA to iteratively adapt a route-set consisting
of all routes going through an 8x8 [km] area inside Dallas. The map includes all street types such as
highways, arterials, and local streets in residential areas. For the case-study experiments, the initial
route-set was derived from trip-table provided by the North Central Texas Council of Governments
(NCTCOG). Refer to [26] for a more specific description of this data.

2.5.1 Router and feedback data

In this section we outline the router used in the case-study and the nature of the data used as
feedback from the micro-simulation to the planner.

During the micro-simulation each link of the street network is constantly monitored. Every 10 time-
steps the current velocities of all vehicles on each link are accumulated. Every tb = 900 time-steps
(15 minutes) the values are converted to link travel-times and written to a file. During grid-lock
on a link the sum of velocities is zero which would result in an infinite travel-time. Therefore, the
travel-time is limited to the time a vehicle would spend on the link if it were going at 1/100th of
the free speed of the link. If the link is vacant, the travel-time is set to be exactly free speed.

The TRANSIMS iteration uses two files for its feedback process. The first file, equivalent to the
one described above, contains average link travel-times. The data, however, is retrieved differently:
vehicles leaving links trigger events which are collected in a statistics file. After the simulation a
post processor aggregates all travel-times into time-bins. There are two reasons for a vehicle count
of zero: (a) no vehicle left the link, because the there was no traffic on the link, or (b) no vehicle
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could leave the link because a link up-stream was completely grid-locked. A second statistics file
containing the link occupancies is used to decide which case applies.

The planner reads the link travel-times t(i) and assigns them to 15-minute time-bins indexed by
i. For each route of the input route-set (e.g. the route-set of the previous iteration) the plan-
ner determines whether it is re-planned or simply written to the output route-set without any
modification.

When the route is to be re-planned, the planner applies Dijkstra’s shortest-path algorithm using
the previously collected link travel-times. Two slightly different versions of the planner (RP1 and
RP2) are used. For both of these versions, T is the distance of the node which is to be labelled
next in Dijkstra’s algorithm. It corresponds to the wall-clock time at which a vehicle following the
shortest path would arrive at the given node.

RP1 is the route-planner which was also used in the iterative reference run of the TRANSIMS
project. It uses the time-bin i = b(T + tb)/tbc which corresponds to a “look-ahead” time-shift
of tb. This improves the relaxation of the TRANSIMS iteration by anticipating congestion
on links [26]. Wunderlich et al [51] investigated the impact of delay of travel time feedback
on the convergence of the iterative routing process. They also report an improvement with
increasing “back-dating” of travel time information.

For time-bins after 12:00 pm the planner assumes free speeds for all links again. Turning
prohibitions at intersections are handled by preventing the shortest path algorithm from
proceeding into any prohibited direction. Note that this approach may exclude complicated
paths that visit a node more than once to circumvent prohibitions. Since the number of
affected plans is very small, this error can be ignored.

RP2 is the research version of the planner. Since its source code is more easily accessible it is used
for most of the runs. In contrast to RP1, the time-bin is computed as i = bT/tbc. Also, in
contrast to RP1, the research version completely ignores left turn prohibitions. For time-bins
after 12:00 pm, the travel-times of time-bin 11:45 am are used.

In both cases, t(i) can only be regarded as an estimate, since it is averaged over a period of 15
minutes. RP1 tends to take time-bins which may be too far in the future, whereas RP2 does the
opposite: it only uses data which is slightly outdated. A more exact approach would be to use T to
compute the first bin i as RP1 does, but use later time-bins if the travel-time on the link is longer
than the bin width. This way, we average the travel-time over all bins that the vehicle “visited”
while it was on the link. The first and the last bins are only weighted with the respective fraction
that they were used.

2.5.2 Route-set conversion

Before the route-set can be used as input for the simulation, the routes extending over the whole
planning area of Dallas - Fort Worth have to be restricted to the simulation area as follows. For
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each route of the original route plan, determine the first link inside the study-area. If the estimate
of the entrance time into that link lies within the simulation-time window (5:00 am to noon),
the beginning of the route is restricted to the first link inside the area. The entrance time into
the study-area is used as the new departure time. If the route leaves the study-area again, the
remaining portion of the route will also be removed. The new scheduled travel-time corresponds
to the time spent inside the study-area. After conversion, all routes are sorted according to their
new departure times.

Also note that, in principal, there may be routes entering and leaving the simulation area more
than once. The current version of the micro-simulation treats these routes as though they had only
one entrance point into the study-area. The fraction of affected routes can be assumed to be small
due to the convex shape of the study-area.

2.5.3 Iteration parameters

The re-planning process as it is used within the current context is defined by a small set of param-
eters: the choice of the initial route-set, the re-planning fraction, and the route selection.

Initial route-set

At the start of the iteration there is a choice between three different initial route-sets that were
generated from the O-D matrix based on

• free speeds (called FS) as time-independent link-weights,

• the logical link-lengths (called SP for shortest path) as time-independent link-weights,

• an empty route-set (called VD for void) in which all routes were deactivated. In this case
“re-planning” a route means planning the route for the first time and activating it. Once a
route is activated it remains activated throughout the iteration.

Re-planning fraction

Choosing the re-planning fraction fr is based on a trade-off between computational speed and
stability of the iterative process. Large fractions allow fast re-planning of all routes in the initial
route-set. As we will see later on, one prerequisite of relaxation is that most of the routes have
been re-planned at least once. As the iteration proceeds, however, large fractions have the clear
disadvantage of moving routes back and forth between similar alternatives (see [26]).

The aim of the iteration process should be either to keep the re-planning fraction small throughout
the process or at least reduce the fraction more and more as the iteration approaches relaxes.
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Route selection and route aging

The above-mentioned re-planning fraction does not yet define which subset of the previous route-set
is to be re-routed. Although there are a multitude of different approaches of how to select routes,
for simplicity we have decided to concentrate on using the age (denoted as “a”) of a route (the
number of elapsed iterations since it was last re-planned) as the only parameter. In particular, we
chose the following versions of route selection:

random The routes are selected at random with the probability fr. The planner does not distin-
guish between routes in any way. All routes are picked with the same probability Prnd = fr.

scheduled random The routes are also randomly selected, but the re-planning fraction was ex-
plicitly chosen for every iteration. We used this scheme only for the first two test-runs, since
it required user interaction. The iteration of the TRANSIMS-14 run was also based upon a
schedule.

linear age The likelihood P to select a route of age a is given by Plin(a) = qa were q is a factor
that only depends on fr and is thus a constant of the iteration.

forced reduction with random smoothing The N routes are split into two groups: those that
have never been re-planned, and those that have been re-planned at least once. For n itera-
tions we re-plan N/n plans of the first group and an additional fraction of fr of the second
group. For iterations after n, only the second portion of re-planning remains. The probability
in iteration i is computed as Pred = fr if i > n or the route has already been re-planned, and
Pred = 1/(n + 1 − i) otherwise.

All of the above versions eventually lead to a stationary age distribution f(a) which can be ana-
lytically predicted. The first and the last versions result in a decreasing exponential distribution
with

frnd(a) = fr(1 − fr)
a,

the second one results in a normal distribution

flin(a) = fre
ba2

.

Since the linear age version tries to re-plan older routes sooner than younger ones, the age distri-
bution is biased towards younger plans compared to the random version.

2.5.4 Relaxation

So far we have only described how we execute the iterative process and what parameters we use
to influence it. A very important aspect is how to measure the actual improvement achieved by
re-planning. As we have seen in Section 2.2.1 the micro-simulation exhibits grid-lock whenever
loops in the network links are completely filled with vehicles. One obvious improvement would
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Figure 2.14: Run 4: Number of vehicles in the study-area — Left: For early iterations the number

of vehicles in the study-area exhibits grid-locks (horizontal lines). As the process proceeds the grid-locks disappear until

eventually most of the vehicles are able to leave the study-area. Right: The last ten iterations show very little variation.

Note the different scale! The number of vehicles in the study-area proves to be an impractical measure for the progress

of the iteration process.

be a reduction of the number of grid-locks. The left-hand side of Figure 2.14 shows the results
from an iteration using random route-selection and a re-planning-fraction of fr = 0.01. We see the
number of vehicles in the study-area plotted against the simulation time (one curve for every tenth
iteration). It is easy to detect two transitions in the figure. First, between iterations 30 and 40
the simulation stops grid-locking with the vehicle count remaining constant after a certain point
in time. Second, between iterations 60 and 70 the throughput of the system has improved so that
practically all vehicles are able to leave the study-area during the simulated time. As the iteration
continues and all grid-locks have been dissolved, these curves get less and less informative since the
absolute difference between simulations decreases. The right-hand side of Figure 2.14 shows the
last 11 of the 110 iterations. Although there is still some improvement visible between the set of
100 through 104 and the set of 105 through 110, the change is not as drastic as in earlier iterations.

Changing the display from the number of vehicles in the study-area to the aggregated travel-time
gives more insight. The left-hand side of Figure 2.15 shows a continuous decrease with some
underlying noise. The improvement is mainly caused by three factors:

a) The traffic volume is increasingly distributed among all street types in contrast to the orig-
inal route-set which is biased towards fast routes (FS) using the network hierarchies in a
heterogeneous fashion.

b) Since the capacities of the access links to the study-area are limited, there is a growing spill-
back of vehicles at the boundaries as soon as demand exceeds capacity. The feedback for
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Figure 2.15: Run 4: Sum of travel-times and executed routes — left: Accumulated travel-time

ttacc of all vehicles in the study-area as a function of the iteration number. It is obvious that despite the high number of

iterations, the value of ttacc has not sufficiently relaxed. right: Number of routes routed through the study-area, those

inserted into the study-area, and finally those successfully executed by noon.

link travel-times does not punish those queues in the original version. In Section ?? we will
introduce a correction to the feedback which takes care of queue delays.

c) The number of routes that are routed through the study-area decreases. The right-hand
side of Figure 2.15 depicts the number of routes planned, inserted, and executed. After 110
iterations only 263281 of the initial 294883 routes remain reducing the traffic load by roughly
10%. This artefact will also be discussed in Section ??.

run 4 5 7 8 10 11 12 13/16 14 15 17

planner RP1 RP2 RP2 RP2 RP2 RP2 RP2 RP2 RP2 RP2 RP2
init. route-set FS FS VD SP FS FS FS FS FS FS FS
iterations 110 110 60 60 20 60 60 60 80 80 60
reductions - - - - 20 - - - - - -
fraction fr 0.01 0.01 0.05 0.05 0.01 0.05 0.05 0.05 0.05 0.05 0.05
selection rnd rnd age age red. age rnd age age age rnd
level-0-corr. - - - - - - - - lin. sqrt -
queue feedb. - - - - - - - yes - - yes

Table 2.3: Parameter combinations of iteration runs — For the initial route-set FS denotes free

speed, VD denotes void and SP denotes shortest path.
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Figure 2.16: Relaxation by accumulated re-planning fraction (all iterations) — With

respect to the accumulated re-planning fraction all curves (except for run 13) collapse into one. The differences of

runs 1 and 11 are caused by exceptionally few or many grid-locks, respectively. Also see Figure 2.17.
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Figure 2.17: Relaxation by accumulated re-planning fraction (non-grid-locking iter-
ations) — The curves were restricted to those iterations with less than 25,000 vehicles in the study-area at

10:00 am.

Accumulated re-planning fraction

A very useful comparison of the replanning success can be obtained by using the accumulated re-
planning fraction facc as the ordinate of the plot. This fraction is defined as the sum of all individual
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vehicle

detour destination

source detour source destination

current link

last valid link
planning horizon

Figure 2.18: Geometry of an online-detour — For a vehicle the head of its current link serves

as the source node for the detour search. The last node that is still within the planning horizon serves as detour

destination. See table 5.19.

re-planning fractions up to a given iteration. Figure 2.16 shows the same curves as in Figure ??
plotted against facc. The curves for all runs coincide very well. Runs 1 and 11 exhibit some points
outside the general slope. This is due to extreme grid-locking of run 11 during early iterations and
very few grid-locks during the first iteration of run 1. Note that run 13 levels off at a slightly higher
sum travel-time than the other runs. This will be discussed in ??.

In Figure 2.17 the similarity becomes even more obvious after removal of all iterations with vehicle
counts below 25,000 at 10:00 am. The peaks of runs 1 and 11 have disappeared. Run 10 is the first
one to reach a sum travel-time of approximately 1.2 ∗ 108 shortly after an accumulated re-planning
fraction of one. At this point, it is the only run in which all routes have been re-routed at least
once.

2.6 Online Routing

2.6.1 Re-routing algorithm

So far we have used static route-sets for all simulations with PAMINA. Each vehicle followed
its route-plan independent of the current road conditions until it reached its destination. This
approach, in conjunction with the discreteness of the traffic model, resulted in grid-locks which
could not be resolved (see Section 2.2.2). Using iterative re-planning, grid-lock no longer occurred
in later route-sets.

The next question is, how to enhance the static approach by using an online re-planning scheme.
“Online” in this context does not mean that we feed real-world online state information (e.g.
data provided by online monitoring devices such as counting loops or video cameras) into the re-
planner. Instead, we use the micro-simulation to provide state information. The starting point for
each experiment is a route-set obtained from the iterative re-planning process. This serves as a
specific “test day” for the traffic in the simulation area. Without online re-planning we test the
quality of this route-set by executing the route-set several times using different random seeds. For
each route through the study-area we obtain average trip-times and their respective variances.
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2.6.2 Criteria triggering re-routing

Using the static case as the base-case, we now allow a certain subset of drivers to access online
information during the trip through the study-area. The fraction of drivers equipped with these
intelligent routing devices is called the market saturation mo−l. Every tupdate

o−l time-step (in the range
of 120 . . . 240 seconds) all equipped vehicles are monitored. For each vehicle the following steps are
executed (see Figure 2.18):

• Starting with the current link (ending in the potential detour source node), the vehicle adds
up the current travel-times ttrav

o−l for all future links in its route-plan until it reaches the first
link whose head is further9 away from the detour source node than the given planning horizon
ho−l. For all remaining links the travel-times contained in the original route are used. The
sum of all individual travel-times yields a new arrival time T arr

o−l .

Note that, here, the “historic” information of the old route is used to allow some reasonable
comparison. The situation that we are investigating can be compared to the daily commute to
work for which each driver memorizes his previous trip time. Of course, there are other ways
to include older information. In a day-to-day simulation of the street network of Nordrhein-
Westfalen (NRW) [25], however, it was shown that there is no significant difference between
using only the previous trip or additional older trips (in this case with an exponentially
decreasing weight).

• The driver compares his scheduled arrival time T arr
sched contained in its original route-plan to

the new estimate T arr
o−l provided by the online router. If the relative estimated delay

do−l =
T arr

o−l − T arr
sched

ttrav
sched

is greater than a given threshold dmin
o−l the driver will request an alternative route from the

online router. Otherwise (and in the case that the vehicle is only two links away from the
destination) no action is taken.

• The online router starts a shortest-path search using the detour source node and the to-
node of the last valid link as detour destination node, which is the last node of the current
route within the planning horizon. The router computes a new estimated travel-time for the
re-routed portion which is combined with the links from the detour destination node to the
ultimate route destination node, yielding a re-routed arrival time T arr

r−r. The relative re-routing
delay (negative values denote an improvement) is given as

dr−r =
T arr

r−r − T arr
o−l

ttrav
sched

.

• If dr−r is smaller than a given threshold dmin
r−r the vehicle uses the new alternative route. This

is counted as a re-routing event. The router will increment a counter associated with the

9Manhattan-distance



34 CHAPTER 2. SIMULATOR PAMINA III

vehicle to keep track of how may times the vehicle has been re-routed. The estimates for all
links up to the detour destination node are replaced by those of the new route. All estimates
after that (including the arrival time) are corrected by adding the time difference T arr

r−r−T arr
sched

to the old values.

2.6.3 Shortest-path algorithm and edge weights

During the simulation, each link j (with length Lj, number of sites Sj, and free speed vfree
j ) is

monitored every tsample time-steps for vehicles. The number Nj of vehicles found on link j and the

sum of their velocities V sum
j are accumulated over the update interval of tupdate

o−l time-steps. At the
end of each interval the travel-time ttrav

i is computed as follows:

ttrav
j =











NjLj/V
sum
j if V sum

j > 0
Lj/vmin if Vj = 0 and Nj/Sj > %thresh

Lj/v
free
j otherwise.

For a given source S, destination D, and departure time T depart the router executes the following
steps: If S is the same as the previous source Sprev and T depart = T depart

prev we re-use the shortest-path
tree of the previous computation. Otherwise, we compute a new shortest-path tree using a simple
label-setting Dijkstra [10] algorithm. The travel-times ttrav

i are used as link weights. Only those
nodes that are in a Manhattan distance of ho−l to S are considered for labeling. The algorithm
stops only after all reachable nodes have been labeled, even if D has already been labeled. This
allows the router to re-use the shortest path tree several times, since the requests are processed
link by link. All vehicles on the same link share at least the first node (source) of their potential
detour. The label at D is used as the travel-time from S to D.

Note that this algorithm works with time-independent edge-weights. Within the context of the test-
bed this can well be justified, since the average travel-time of all routes is about 10 . . . 12 minutes.
For re-routing in larger areas, one would have to include travel-times obtained from sources other
than current measurements. In this case it is still possible to compute the shortest paths in an
efficient manner on a parallel computer (see e.g. [11, 44]).

2.6.4 Re-routing parameters

In Section 2.6.2 we have described four parameters that will be used to influence the behavior of
the online re-planning. These are:

Market Saturation The impact of the market saturation m will be important for the marketabil-
ity of online re-routing devices. Potential customers will only accept devices that provide a
certain guarantee of success. If fees for route alternatives are only due when they were suc-
cessful (e.g. resulting in a travel-time shorter than some predefined average) providers will
be interested in estimating what minimum success-rate would be necessary to break even.
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Planning Horizon The planning horizon ho−l (maximum spatial look-ahead) of the detour search
has an important impact on the run-time behavior of the shortest-path algorithm. In a traffic
map, intersections are homogeneously distributed over the map area. The number of nodes
to be labeled within a given distance ho−l from the source node scales with O(h2

o−l). For this
reason, the value should be kept as small as possible. On the other hand, increasing the value
may enable the algorithm to find more useful alternatives.

Note that a small ho−l not only reduces the number of labeled nodes considerably, it also
decouples re-planning regions in a distributed route guidance system (see e.g. [44]).

Update Interval The update interval for the link travel-times T update
o−l will represent a trade-off

between a quick response to increasing demand on links (short intervals), on the one hand,
and good link travel-times statistics on the other hand. As far as computational efficiency is
concerned, shorter intervals also increase the amount of communication between re-planning
regions. This is directly transferable to the hardware requirements of a real-world route
guidance system: the faster the update, the higher the required bandwidth.

Accumulated Re-planning Fraction The result of the iterative re-planning process is a self-
consistent route-set which exhibits little fluctuation with respect to additional re-planning.
The question is if reality is actually that close to a possible equilibrium. In case it is not,
route-sets obtained from earlier iterations may be more similar to a real-world configuration
of route-choices. Therefore, we will use route-sets from different iteration runs as base-cases
for our re-planning experiments.

2.6.5 Simulation setup

For each experiment we run the simulation five times with no online re-planning (m = 0) to obtain
data for the base-case. Each run uses a different set of random seeds. Afterwards we run a set of
five runs for each parameter combination that we investigate.

In contrast to the iteration runs presented in Chapter ?? we changed the behavior of the planner
RP2 slightly. In order to provide current travel-time estimates for all drivers, all routes, even
those that are not re-planned, are updated to reflect the travel-times of the previous simulation
run. Otherwise, the incentive to request a new route-plan would be considerably reduced for early
iterations, since most of the drivers still have estimates dating back to iterations when grid-locks
were very common. Figure 2.19 shows relative delays for runs 13 and 17 which use the same
parameter combination but differ in the travel-time estimates. Run 17 shows time-independent
behavior whereas run 13 starts out by underestimating travel-times but considerably overestimates
travel-times later in the simulation. We chose the parameter combination

• planning horizon h = 5 [km] (corresponding to half the diameter of the study-area),

• update interval T update
o−l = 120 [sec], and tsample = 10 [sec],

• accumulated re-planning fraction facc = 1.0, and
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Figure 2.19: Update of travel-times — The curves show the running average of the relative delay
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• vmin
j = 0.01 ∗ vfree

j ,

• dmin
o−l = dmin

r−r = 0.1, and %thresh = 0.05

to be the reference for all our comparisons. These and most other combinations were sampled in
intervals of 10%, for market saturations between 0 and 90%.

2.6.6 Recurrent congestion

The first case that we investigate is that of recurrent congestion. The route-set that is used for
the simulation contains a configuration of drivers that have chosen their routes over a re-planning
period of 20 iterations. Each driver has chosen his route based on a snap-shot of the previous
iteration. Since the micro-simulation is non-deterministic, the traffic conditions in areas with large
variance may be completely different from the current run. Therefore, there is a certain chance
that choosing a different route will improve the trip-time of a driver although, on the average, the
current route is already a good choice. Online routing comes into play when the current snap-shot
is used instead of an outdated one.

Quality of service

When subscribers are offered a route alternative they expect an improvement in travel-time relative
to the original route they would have taken. Unfortunately, due to the uncertainty of state infor-
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Figure 2.20: Quality of service (iteration 20) — Average travel-times of non-subscribers (lines

without symbols) and subscribers (corresponding lines with symbols).

mation and prediction, the alternative may not live up to its promise. Therefore, it is important
to have some quantitative measure about how well the re-routing process works.

First we will look at the overall benefits for subscribers compared to non-subscribers. We compute
the average travel-time of all subscribers and non-subscribers and average them over time-bins (with
respect to their insertion time) of 15 minutes. In Figure 2.20 the average travel-time is plotted for
different market saturations. Prior to 10:30 am the curves for non-subscribers are higher than the
respective curve for non-subscribers. The travel-time difference decreases as the market saturation
increases.

Figure 2.21 shows this result more clearly. During the peak of the rush hour, a ten percent market
saturation yields an average improvement of 200 seconds which corresponds to 28%! Of course,
this statistic does not prove the overall benefit of such a service because the improvement could
be strongly biased towards a small subset of subscribers enjoying extreme reductions in travel-time
while others have no benefit or are delayed. Still, Figure 2.21 may be important for marketing
purposes since it clearly shows that the system works well if restricted to a small clientele.

It is interesting to take a look at the distribution of relative delays upon arrival at the destination.
From the five runs that were executed for market saturation m = 0.2 we gathered the subscribers
into three groups (see Figure 2.22): those who were never re-routed (rr = 0), those who were re-
routed one to five times (rr = 1), and those who were re-routed six to ten times (rr = 2). Trips with
more than ten re-routing events were not considered because of their insufficiently small counts.
The curve for rr = 0 is mainly a normal distribution centered around zero delay since this subset
does not differ from non-subscribers at all except for the fact that they “know” they cannot receive
better alternative routes. The curve for rr = 1 that also peaks at zero delay, is biased towards
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negative delays. Specifically, there are more subscribers arriving earlier than non-subscribers. The
effect becomes even more obvious for curve rr = 2, where the peak has actually shifted towards
negative delays. This means that within our re-routing approach it is worth while to be re-routed
more than once.



Chapter 3

Implementation

3.1 General Overview

The implementation of PAMINA III is based upon descendent C++ classes derived from the C++
base classes provided in the Parallel Toolbox Version 2.0. A detailed description can be found
in [39]. However, we would like to outline how the traffic simulation interacts with the toolbox
and its basic functional elements (refer to Figure 3.1). The PAMINA source code splits into three
major parts: (a) the underlying CA model, which is the most compact module containing only

500
CA Graphics

(C++ base classes) 29.000

7.000

17.000
(descendant C++ classes)

PAMINA III

Parallel Toolbox 2.0

PVM and MPI

Figure 3.1: Software implementation structure of PAMINA III — The parallel toolbox

serves as an interface between the traffic application classes in PAMINA and the message passing libraries PVM

and MPI. The figures in the lower right corners denote the number of source-code lines in each module. Note that

most of the programming effort was required for coding the network implementation.

40
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about 500 lines of code, (b) the graphics support module with about 7.000 lines, (c) handling of the
traffic network elements, the route-plans, and statistics with about 17.000 lines of code. The latter
also contains the interface to the Parallel Toolbox which by itself has about 29.000 lines of code.
The toolbox uses the commonly available message library PVM 3.3.1 as high-level communication
interface to the underlying computer hardware. PAMINA II and the Parallel Toolbox 1.0 have
been ported to several platforms, such as Sun Solaris, SGI Irix, DEC Alpha, IBM RS6000, and
PC Linux.

3.2 Parallelization

The inherent structure of a traffic micro-simulation favors a domain decomposition as the general
approach to parallelization:

• The street network can easily partitioned into tiles of equal or almost equal size. A realistic
measure for size is not the number of net elements (nodes and segments), but the CA grid
lengths associated with those elements (see Figure 3.2 for a schematic view of tiles and
Figure 2.3 for a concrete example). Tiles are then assigned to processors.

• The range of interdependencies between network elements are restricted to the interaction
range of the CA. All current rule sets have an interaction range of either vmax ≡ 35[m] or
2vmax ≡ 70[m] which is a short distance compared to the average length of the edge segments
(e.g. 484[site] ≡ 3630[m] for map FRG) in a motorway network. In a city street network
which has somewhat shorter segments on the average, there may be links which are to short
to hold at least 10 grid sites. We artificially enlarge the links to contain the minimum number
of sites. In any case, the most straightforward approach is to cut the network at the middle
of street segments.

• As a consequence of the distribution the tiles exchange boundary information containing all
vehicle data necessary for the execution of the traffic rule set, resulting in local communication
between neighboring tiles. Obviously, there is no real counterpart for a boundary in the
original traffic simulation. It is an artifact of the parallel implementation. We differentiate
between two resolutions of vehicle data: (a) the primary vehicle data only contains information
on the location of vehicle, which is required for the CA rule set. (b) The secondary data
contains all other information about the vehicle, such as maximum velocity and route-plan.

The traffic links and intersections are mapped onto the structural elements supplied by the toolbox.
These are nodes, edges, and boundaries:

• The node class was used to represent exactly one node of the traffic network. The toolbox
guarantees that nodes exactly reside on one CPN. This is advantageous for the substructures
associated with a node: all elements can assume that other related elements of the same
substructure reside on the same CPN. If an incident edge happens to be split (see below), at
least the half of the edge next the node can be assumed to be local.



42 CHAPTER 3. IMPLEMENTATION

CPN link

CPN 2

CPN 3

CPN 1
CPN 2

CPN 1

CPN 0 CPN 0

SlaveMaster

(in)active intersection
tile boundary

(in)active edge
boundary edge CPN

Figure 3.2: Geometric distribution of a street-network — Left: Traffic network on the master:

inactive representation of the complete network. Active representation of the local sub-net. Right: Traffic network

on a slave (here CPN 1): only active representation of the local sub-net.

• The edge was used to represent a bi-directional multi-lane street segment. For each direction a
multi-lane CA grid was used. In contrast to nodes, an edge may be duplicated by the toolbox
in case that the incident nodes reside on different CPN. Such a so-called boundary-edge or
inter-CPN edge is split exactly in the middle. A discrete CA grid of odd length l has to
be handled with care by assigning bl/2c sites to one and dl/2e sites to the other CPN after
breaking their symmetry. On one CPN the first half is active and on the other CPN the
second half.

• Exactly in the middle boundaries are retrieved from the grids and transferred to the remote
CPN. They contain information about the state of the traffic system close the split point.

3.2.1 Initial domain decomposition

The toolbox handles the initial distribution and subsequent load balancing if requested. The
geometric node locations are used to perform a recursive orthogonal bisection of the traffic network.

For the initial distribution of a network with nodes n1 . . . nN onto CPNs C1 . . . CC we have to make
three assumptions:

• We have performance values for each CPN given in arbitrary but proportional values S1 . . . SC

where larger values denote better performance.
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• Each node ni has an estimated load li associated with it which is derived from the complexity
of the node itself and all its incident edges. In particular, we use the number of CA grid–sites
on transfer lanes at junctions as a measure for the nodes, and the number of CA grid-sites
on traffic links as a measure for the edges. In PAMINA III the actual execution time of the
previous iteration is used individually for each network element (also see 3.2.5).

• Each node ni has an Euclidean location (xi, yi).

Recursive algorithm

The algorithm is defined recursively for a set of nodes np . . . nq, a set of CPNs Ca . . . Cb, and
recursive depth d.

1. If the number of CPNs b − a + 1 is one, assign all nodes to this CPN.

2. Otherwise, split CPNs in halves C l = {Ca, . . . , Cba+b/2c} and Cr = {Cda+b/2e, . . . , Cb} with

sum performances S l =
∑b(a+b)/2c

i=a Si and Sr =
∑b

i=da+b/2e Si.

3. Sort nodes according to their x-coordinates for even depth d and according to their y-
coordinates for odd depth d.

4. Split nodes at node nj (p < j ≤ q) into two sets N l = {np, . . . , nj−1} with load Ll =
∑j−1

i=p li
and N r = {nj, . . . , nq} with load

∑q
i=j li in such a way that their load ratio is equivalent to

the ratio of the performance values:

Ll

Lr

!' Sl

Sr

Due to the granularity of the li exact equality may not be achieved. In this case, j has to be
chosen in such a way that the inequality in minimized.

5. Split the subsets C l with nodes N l and Cr with nodes N r recursively.

Corrections

Since no topological aspects are considered, the resulting tiles may not be connected anymore.
Nevertheless, each CPN can re-establish a single connected component by casting off all superfluous,
not connected components to neighbors and keeping the largest one only.

If the area of the map is not square, the first split of the nodes should be parallel to the shorter
edge of the rectangle. This way, unnecessarily narrow stripes are avoided.
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3.2.2 Simulation control

The toolbox uses a master-slave algorithm as control logic for program execution. The master
process is started first, usually directly by the user. It spawns several slaves on the parallel computer
architecture. For the simulation itself the master also operates as a slave. It does, however, also
retain some additional functionality.

The following enumeration is supposed to convey an idea of the main steps executed during a
simulation run. See Figure 3.3 schematic overview of such a run on four CPNs.

1. The user initializes PVM on the future master CPN by calling the interactive PVM-shell pvm.
He adds all CPNs manually or starts a script to do this automatically. The user starts the
application executable which is the master process.

PAMINA III also supports MPI as message passing library, in which case the user simply
calls the application executable with one additional command line parameter (-np) defining
the number of CPNs to be used.

2. The master starts all other instances of the program on the slave CPNs. They will enter the
main message loop and wait for messages.

3. The master reads the network structure from the input data files.

4. The master distributes the network and sends out messages to the slave CPNs with encoded
network elements.

5. The master sends an event to all CPNs to start a simulation sequence of a given number
of time-steps. All slaves send out the boundaries for the first time-step to the neighboring
CPNs. During that sequence the master mainly functions as a slave.

6. The slaves enter the main loop:

• They wait for the arrival of all boundaries from their neighbors.

• If necessary, statistical data (e.g. idle time statistics) is sent out.

• If idle-time statistics are available local load balancing is done.

• They execute a time-step.

• Unless the end of the sequence is reached they send out the boundaries for the next
time-step.

The master has several additional functions:

• If available, global statistical data from the slaves is processed and displayed.

• The X-Windows event queue is checked if there is need to update the graphics output.

• The PVM environment is checked for changes of the CPN topology. If necessary, CPNs
may be removed from the topology or new CPNs may be added to the topology.
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Figure 3.4: Exchanging boundaries

7. The master stops the simulation by sending an termination event to all slaves.

8. The master and the slaves stop execution.

3.2.3 Boundaries

After the distribution of the nodes of the network there will be edges crossing CPN boundaries
which are called boundary edges. They are cut exactly in the middle so that each associated CPN
computes half of the edge. Note that, therefore, boundary edges exist twice (see Figure 3.4). Before
either CPN can execute a time-step it obtain information about the objects on the remote CPN. We
differentiate between primary and secondary vehicle data. Primary data only contains information
about the location of the any objects in the boundary area, which is sufficient for evaluating the
CA rule set. Secondary data also contains information about (or rather copies of) the vehicles
themselves.

As for the width of the boundary we have to transmit information about all vehicles within the
interaction range. This requires encoding and decoding of all vehicle data that are located within
a range of vmax sites from a boundary. The information is transferred to the remote CPN. Over
there, it is given to the duplicate of the edge which appends this information to the local data
stored on the edge. The additional data allows the execution of the time-step.

The actual size (byte-wise) of boundaries can be optimized by taking advantage of specific char-
acteristics of the CA rule set. If the local density is high, that is, the boundary is located within
a traffic jam, there may be more than one vehicle per lane. The CA rules, however, only refer to
the immediate predecessor or successor on each lane, reducing the maximum number of vehicles
in a boundary to one per lane. Moreover, only the primary vehicle data is needed and not the
secondary data including the route-plan. This is true, at least for the first sub-time-step. In the
second sub-time-step all vehicle data is needed to guarantee a consistent vehicle migration across
CPN boundaries, which will be described next.
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Consistent handling of boundary objects

Boundaries contain regions in which the same objects are handled by both CPNs (see Figure 3.5).
In order to guarantee consistence of the simulation it is necessary that both instances of the same
object behave exactly identically. In case of a deterministic simulation this is, of course, no problem.
In case that decisions of objects depend on random numbers it is necessary to make the random
generator1 part of the object and to pass it together with the object data to the remote CPN. In
the CA model the stochasticity of the motion of a vehicle is completely determined by a single
bit which is set with a probability of pdec. In PAMINA II this bit is included whenever secondary
boundary information is transferred.

During a time-step the objects on an edge usually change positions, that is, some will probably leave
the remote boundary and enter the normal active part of the edge whereas others will do vice versa
(see Figure 3.5). After the time-step all objects have to be deleted that still remain in boundaries
supplied by remote CPNs (object 244 for CPN 1 and objects 332 and 567 for CPN 2). Likewise all
objects that have entered the local active part of the edge have to be permanently inserted (object
567 for CPN 1 and object 244 for CPN 2). Note that object 332 has to be deleted, too, although
it would be at the correct location for the next time-step. Leaving it in the edge, however, would

1or rather: values necessary to reproduce the random sequence on the remote CPN, which could be for example
the current seed of the generator
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lead to collision with the boundary for the next time-step which will contain another copy of that
object.

3.2.4 Timing of a simulation time-step

The simulation uses a parallel update with a global time-step. However, synchronization of all CPN
is only performed after a so-called simulation–sequence comprising approximately 10-20 time–steps.
In between, there is only a weak synchronization through the exchange of boundaries. Between
neighboring CPNs there may be a difference in time-steps of ∆t = ±1 as displayed in Figure 3.6:
due to slow execution of time step 1 on CPN C, CPN B has received boundaries from CPN A for
time step 2 and already for time-step 3. The toolbox buffers those early boundaries automatically.

The global time–step is used to guarantee consistent collection of statistical data: Although partial
results from the CPN may not be collected at the same physical wall-clock time due to a potential
time-step gradient (see [28]), they always belong to the same logical time-step. The master CPN
takes care of combining partial results.

Each global time-step is subdivided into two sub-time-steps. The first sub-time-step is used for
lane changing, while the second sub-time-step is used for forward motion. Each sub-time-step
requires the exchange of boundaries between CPN, although they are of different resolution: the
first time-step only requires the transfer of primary vehicle data, while the second sub-time-step
also comprises the secondary data.

Each sub-time-step is subdivided into a preparation phase (P) and an execution phase (E) preceded
by the implicit local synchronization (IS) through boundary exchange as summarized in Table 3.1.

3.2.5 Benchmarks

We used a route-plan of run 11 (iteration 60) to measure the real-time-ratio of PAMINA. The
simulation ran on SUN Enterprise 2000 with 14 CPUs (250 MHz) and 2 Gigabytes of memory.
Figure 3.7 shows the results for different numbers of CPUs (4, 6, 8). The maximally obtainable
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sub-time-step IS/P/E Action

1 IS exchange primary vehicle data, gather statistics
1 P CONN, DR, MR, resolve dead-locks
1 E lane change
2 IS exchange all vehicle data
2 P CONN, ER, AR
2 E motion, migration

Table 3.1: Timing of a simulation time-step
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Figure 3.7: Performance of PAMINA III — The real-time ratio is plotted for 4, 6, and 8 CPUs on

a Sparc Enterprise 2000 with 250 Mhz. The trough around 8:00 am is caused by the high vehicle density inside the

study-area.

ratio for PAMINA is about 22 for 8 CPUs and early simulation hours while the study-area is still
empty. The RTR drops to 18 during rush-hour at 8:30 am.

In PAMINA III we implemented simple external feedback for the initial static load balancing.
During run time we collect the execution time of each link and each intersection. The statistics are
dumped to file every 1000 time-steps. For the next iteration run the file is fed back to the initial
load balancing algorithm. In this iteration, instead of using the link lengths as load estimate, the
actual execution times are used as distribution criterion.

To verify the impact of this approach we monitored the execution times per time-step throughout
the simulation period. Figure 3.8 depicts the results of run 17 for several iterations. For iteration 1,
the load balancer used the link lengths as criterion. The excution times were low until the first
grid-locks appear around 7:30 am. The execution time increased fivefold from 0.04 [sec] to 0.2 [sec].
In iteration 2 the execution time is almost independent of the simulation time. Note that due to the
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Figure 3.8: Execution times with external load feedback — The feedback visibly improves the

performance of the simulation. After only two iterations the execution time is almost time-independent.

equilibration the execution time for early simulation hours increased from 0.04 [sec] to 0.06 [sec],
but this effect is more than compensated later on.

The figure also contains plots for later iterations (11, 20, and 40). The improvement of execution
times is mainly due to the route adaptation process: all grid-locks have disappeared and the average
vehicle density is much lower.
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Installation & Compilation

4.1 Installing the Files

4.1.1 Installing the Simulation Suite

All files required by the core simulation suite are contained in the GNU-zipped
PaminaIII-<VERSION>.tgz archive. Unpack this archive into a directory of your choice. The
subdirectory PaminaIII will be called the PAMINA home directory from here on.

4.1.2 Requirements

The source code of the microsimulation depends on a handful of other tools and libraries. Most of
them are available as open source packages on any unix system. These are:

• GNU g++

• GNU zip

• GNU make

• GNU m4

• GNU bison

• GNU flex

• Python

For generating the statistical diagrams from the simulation output one optionally needs the follow-
ing tools:
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• GNU awk

• Gnuplot

• ppmtogif

For the tools listed above any up-to-date version currently available should work fine. You can
always check the version numbers used for PAMINA development at the PAMINA homepage:

http://www.the-rickerts.de/mr/PAMINA.html#prerequisites

However, the core library for the parallization may be harder to come by. This is either

• Parallel Virtual Machine (PVM) http://www.epm.ornl.gov/pvm/pvm home.html or

• Message Passing Interface (MPI) http://www-unix.mcs.anl.gov/mpi/ .

The home page of PVM has been down for a while. That is why a tar archive of version 3.4.4 has
been included in the 3rdparty subdirectory of the Pamina archive.

The microsimulation suite has been tested for a few platforms and architectures. The most up-to-
date information on compatible platforms can be found at the PAMINA homepage

http://www.the-rickerts.de/mr/PAMINA.html#platforms

4.2 Compilation

4.2.1 Environment Variables

Before you compile the suite make sure to set the following environment variables. If possible
include them into your shell profile script.

SITE Choose a name for the computer site that you build the simulation on. It will be used to
include site specific settings in the config subdirectory. See 4.2.2.

COMMUNICATION Choose the core library for the parallization of the microsimulation. This has to
be either PVM or MPI. Note that due to the importance of the setting most of the scripts will
not start without this variable having been correctly set.

HOST This variable should contain the hostname of the computer you compile on. It is usually set
automatically in your profile.
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PAMINA ARCHIVE HOME Set this variable to a directory that will contain the gnu-zipped files of the
microsimulation. We recommend to make it point to a large but not necessarily fast file
system.

TOOLBOX APP HOME This setting is optional. TODO.

There are more settings related to the parallel core library you you choose. Please, see 4.2.4 for
PVM or 4.2.5 for MPI.

4.2.2 Site Specific Settings

Your computer site may require specific settings (e.g. choosing a specific version of the GNU
compiler or setting a specific path to a system library). All this customization should be made in
a file called <SITE>.Settings which must be located in the config subdirectory of the PAMINA
home directory. If available the file will automatically sourced by the make process.

4.2.3 Hardcoded Simulation Parameters

The microsimulation has several hard coded limits which can be set by C-defines in the source code.
The most interesting are:

MAX LANES in TrafficData/CAConfig.h Sets the maximum number of lanes that can be used in
the microsimulation segments.

CA DEFAULT V MAX in TrafficData/CAConfig.h Sets the default maximum speed of the vehicles
in CA units.

MAX ROUTE LENGTH in TrafficData/TRouteplan.h Sets maximum number of links in a route
plan.

MAX SITES PER GRID in TrafficData/CAConfig.h Sets the maximum number of grid sites per
lane in a street segments and hence the maximum legth of a street segment.

SP NAME SOURCETIMESLACK in TrafficData/TrafficDataConfig.h Sets the time slack in sec-
onds with which a late insertion of a vehicle is still regarded to be in time.

Note that this list is far from complete. TODO!

4.2.4 Setting Up PVM For Compilation

To use PVM as the core parallelization library follow these steps:

1. Retrieve a current version of the library from the web site
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http://www.epm.ornl.gov/pvm/pvm home.html

or use the archive provided in the 3rdparty subdirectory.

2. Unpack the archive in a directory DIR of your choice.

3. Set the environment variable PVM ROOT to the root directory of PVM. For example, on a
bash/ksh shell use

PVM ROOT=DIR/pvm3

export PVM ROOT

We recommend to include the settings into your profile. Make sure that you also browse
through the Readme file located in the pvm3 subdirectory.

4. cd into $PVM ROOT

5. Type make

6. Set the environment variable PVM ARCH using a script provided by PVM. For example, on a
bash/ksh shell use

PVM ARCH=‘$PVM ROOT/lib/pvmgetarch‘

export PVM ARCH

We recommend to include the settings into your profile.

7. Set the environment variables for the execution path and the manual pages:

PATH=$PATH:$PVM ROOT/lib/$PVM ARCH

PATH=$PATH:$PVM ROOT/bin/$PVM ARCH

PATH=$PATH:$HOME/pvm3/bin/$PVM ARCH

export PATH

MANPATH=$MANPATH:$PVM ROOT/man

export MANPATH

We recommend to include the settings into your profile.

4.2.5 Setting Up MPI For Compilation

To use MPI as the core parallelization library follow these steps:

1. Retrieve a current version of the library from the web site

http://www-unix.mcs.anl.gov/mpi/
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2. Unpack the archive and follow the instructions provided in the archive. MPI is a well docu-
mented library so we won’t provide any additional information here.

3. Set the environment variable MPI ROOT to the root directory of MPI. This is just one
level above the selected MPI device. For example, if your MPI device installation is in
/vol/mpich/ch p4 on a bash/ksh shell use

MPI ROOT=/vol/mpich

export MPI ROOT

We recommend to include the settings into your profile.

4. Set the environment variable MPI ARCH to reflect your system architecture. You can choose
any name. It will be used to differentiate between versions of PAMINA compiled for different
archtectures. On a linux system a sensible choice would be LINUX. Also set the environment
variable MPI DEVICE to the MPI you have compiled MPI for. For example, on a bash/ksh
shell use

MPI ARCH=LINUX

export MPI ARCH

MPI DEVICE=ch p4

export MPI DEVICE

We recommend to include the settings into your profile.

5. Set the environment variables for the execution path and the manual pages:

PATH=$PATH:$MPI ROOT/$MPI DEVICE/bin

export PATH

MANPATH=$MANPATH:$MPI ROOT/$MPI DEVICE/man

export MANPATH

We recommend to include the settings into your profile.

Note that you can setup MPI for more than one device. For PAMINA, however, exactly one device
only must be selected using MPI DEVICE.

4.2.6 Starting the Compilation

At this point we assume that you have installed all required tools and made all required changes
to your environment as described above. To make build all applications of the suite follow these
steps:

1. cd into the PAMINA home directory.
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2. Type

make prepare
make depend
make

Note that on your system the name of the GNU make may be different (e.g. gmake).

If you run into any errors executing the steps above you may have to edit your site specific settigs
file in the config subdirectory. See 4.2.2. The command make prepare will have created a sample
file for you by that time.
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Usage

In this chapter we will explain the usage of the microsimulation suite PAMINA. Note
that this mainly covers the execution of pre-defined scenarios and the control script
RunIterativeReplanning.py. Although it is possible to start the planner, the route converter
or the microsimulation directly this is not recommended.

5.1 Scenarios

A scenario is tested setup for PAMINA which allows you to check the correct installation of the
suite and at the same time serves as an example on how to configure the suite according to your
needs.

Each scenario usually comprises the following components:

• network files,

• an initial routefile,

• a makefile,

• a Pamina configuration,

• a set of Gnuplot evaluation files.

Note that if you run into trouble executing one of the scenarios it is wise to double check your
setup and consult the author of Pamina before trying to build your own scenario from scratch.
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5.1.1 Installing a Scenario

A scenario also comes in a GNU-zipped archive. The archive should be unpacked in the scenarios
subdirectory of your PAMINA home directory. Note that some of the scenarios may consume a lot
of space on your hard drive. You may want to make scenarios a link to large file system.

5.1.2 Setting Up PVM For Execution

If you use PVM as the core parallelization library follow these steps:

1. Make sure that your environment contains all variables for PVM that were described in 4.2.4.

2. If you haven’t do so already, create a hostfile in your home directory which reflects your host
setup. Make sure to include

• one regular line of format & HOSTNAME for each host to be included into your parallel
machine, and

• one special comment of format #! HOSTNAME NUMBER-OF-CPUs for each host having
more than one CPU.

There is a sample hostfile hostfile.sample in directory etc which can serve as a template.
Note that you can have more than one hostfile. However, if you do not use $HOME/hostfile

you have to change the setting in the PAMINA configuration file (see TODO).

3. Start the PVM daemon process by typing

pvm ${HOME}/hostfile
conf

quit

Make sure the output of the conf command reflects the settings in your hostfile. You should
see someting like this:

mr@casimir:~$ pvm ${HOME}/hostfile

pvm> conf

conf

1 host, 1 data format

HOST DTID ARCH SPEED DSIG

casimir 40000 LINUX 350 0x00408841

pvm> quit

quit

Console: exit handler called

pvmd still running.
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5.1.3 Setting Up MPI For Execution

Currently, MPI is only supported for multiple CPNs on the same host using mpi run. That is why
there is no need to do additional configuration beyond the settings of environment variables as
described in section 4.2.5.

5.1.4 Running the Scenario

To run a scenario follow these steps:

1. Make sure you have set up all environment variables described in 4.2.1.

2. Make sure you have set up the core parallelization library for execution. See 5.1.2 for PVM
or 5.1.3 for MPI.

3. cd into the directory of scenario the name of which starts with PaminaScenario... and
which is a subdirectory of the scenarios subdirectory of the Pamina home directory.

4. Type make prepare to create all neccessary directories and files. This will usually create the
subdirectory log and a link called archive into your PAMINA ARCHIVE HOME. Note that the
name of the GNU make utility may be named differently on your system (e.g. gmake).

5. Type make run to start the iterative replanning and microsimulation. If you run into any
problems at this point please check your setup and if everything fails consult the author.

6. During the execution of the suite you can monitor the progress by looking at the files in the
data and archive directories. The standard output and standard error of the applications
can be found in the log subdirectory.

If the suite returns successfully and you have gnuplot and awk installed on your system you
can have look at the graphical output of the iterative replanning process. To do this type make

routing stat. Usually there is more than one gnuplot file available. To view any of the statistics
in the evaluate subdirectory simple type make GNUPLOT-FILENAME-WITHOUT-EXTENSION for any
file that you see in the subdirectory.

5.2 Input Files

In this section we describe the structure of all input files. They belong to the following groups:

• Files containing the configuration of the parallel computing environment and the applications.

• Files containing the street nework elements

• The file containing the route set which is to be executed.
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5.2.1 Configuration

Parallel Machine Setup

The setup of the parallel machine depends on your choice of core parallelization library. Please,
see 5.1.2 for PVM and 5.1.3 for MPI.

Application Settings

All configurable application settings are contained in a ASCII configuration file which resembles a
Windows INI file. The control script reads a configuration file template, adds items to it and writes
out the final version which is read by the route converter and the microsimulation.

Currently, this manual does not cover all settings that can be made in the configuration file. For
a complete list see the commented file ParadoxOriginalIterationConfig of the Braess paradox
scenario.

The settings which most likely need modification follow:

PVM.Hostfilename Set the name of the PVM hostfile which will be used to define the parallel
machine. The filename may contain variables as described in 5.2.2.

Iteration.PaminaHomeDir Set the directory where the PAMINA simualation suite was installed,
e.g. the one which has the src and bin subdirectories. It’s a good idea to use a relative path.
The directory path may contain variables as described in 5.2.2.

Iteration.ArchiveDir Set the archive directory where files will be archived. The filesystems
pointed at has to be large enough to accomodate all file of the iteration process. For example:
Each iteration of the Dallas Fortworth study area scenario generates about 120 Megabytes of
data (mostly gnu-zipped).

TrafficData.BaseFilename Set the base filename (including the path but excluding the exten-
sion) of the network files in the PAMINA format. The filename may contain variables as
described in 5.2.2.

TrafficData.LoadAccessories If set to 1 this switch will activate the loading of the network
accessories.

TrafficData.LoadPhases If set to 1 this switch will activate the loading of the intersection phasing
data.

TrafficData.StartTime Sets the start time of the simulation in hours.

Planner.TransimsMapBaseFilename Set the base filename (including the path but excluding the
extension) of the network files in the TRANSIMS format. The filename may contain variables
as described in 5.2.2.
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Planner.ReplanningFraction Sets the fraction [0 . . . 1] of routes which need to be replanned.
Note that during the first iteration (with index 1) the replanning fraction is set to 1.0 which
will trigger the replanning of the whole route file.

RouteConverter.Filename Set the template file name that will be used for the TRANSIMS route
file during the iteration. A good choice would be

%W/data/plans.TRANSIMS.SCENARIO. ITERATION

The %W will automatically be replaced by the work directory and the ITERATION by the
index of the previous/current iteration. Also see 5.2.2.

RouteConverter.MinTime Sets the minimum departure time of a route in hours. Any route before
that time will not be transferred to the PAMINA route file.

RouteConverter.MaxTime Sets the maximum departure time of a route in hours. Any route after
that time will not be transferred to the PAMINA route file.

Router.Routeplan Set the template file name that will be used for the clipped PAMINA route
file during the iteration. A good choice would be

%W/data/plans.PAMINA.SCENARIO. ITERATION

The %W will automatically be replaced by the work directory and the ITERATION by the
index of the previous/current iteration. Also see 5.2.2.

ParSim.MaxTimeSteps The maximum number of timesteps (seconds) that the microsimulation
should execute. Make sure to add one timestep to get the statistical data of the final timestep.
Note that the simulation will also terminate after a certain fraction of the routes have been
executed.

ParSim.Graphics If non-zero the microsimulation will try to display an X window. The graphical
output only works if PAMINA has been compiled using setting XWINDOWS=1. See section 5.5.

5.2.2 Vaiable Substitution in Filenames

Most of the filenames in the configuration file may contain specific variables which are replaced by
default paths at runtime. These are:

%h Home directory of the user running the application.

%W Working directory of the application.

ITERATION Current iteration usually formatted as a three digit decimal with leading zeros.
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5.2.3 TRANSIMS Network Elements

The TRANSIMS network files define the street network that is used by the planner planner. All
files described here use a line oriented format with one data record per line. The first line contains
the column names and is to be ignored. Otherwise, there are no comments lines. Columns are
seperated by commas.

Nodes (.nod)

The format is described in Table 5.1. The base filename (without the extension) is given by
configuration setting Planner.TransimsMapBaseFilename in 5.2.1.

column format description

1 LONG Logical node id.
2 DOUBLE x coordinate given in Meters.
3 DOUBLE y coordinate given in Meters.

Table 5.1: Input file format for TRANSIMS network nodes — See table for details on columns.

Links (.edg)

The format is described in Table 5.2. The base filename (without the extension) is given by config-
uration setting Planner.TransimsMapBaseFilename in 5.2.1. TRANSIMS links are bidirectional
by default. To activate a direction the corresponding number of lanes must set to zero.

5.2.4 PAMINA Network Elements

The PAMINA network files define the street network that is used by the microsimulation PAMINA.
All files described here use a line oriented format with one data record per line. Columns are
seperated by white characters.

Nodes (.nod)

This file contains the nodes (intersections) of the street network. The format is described in
Table 5.3.

Links (.edg)

This file contains the links (street segments or edges) of the street network. The format is described
in Table 5.4.
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column format description

1 LONG Logical link id.
2 LONG Logical id of node A
3 LONG Logical id of node B
4 LONG Number of lanes from B to A
5 LONG Number of lanes from A to B
6 DOUBLE Length of the link in Meters.
7 DOUBLE Capacity of the link from B to A in vehicles/second
8 DOUBLE Capacity of the link from A to B in vehicles/second
9 DOUBLE Speed limit of the link from B to A in meters/second
10 DOUBLE Speed limit of the link from A to B in meters/second
11 DOUBLE Free speed of the link from B to A in meters/second
12 DOUBLE Free speed of the link from A to B in meters/second
13 DOUBLE Crawl speed of the link from B to A in meters/second
14 DOUBLE Crawl speed of the link from A to B in meters/second
15 LONG Functional class of the link (1=highway/throughway)
16 LONG Toll of the link from B to A
17 LONG Toll of the link from A to B

Table 5.2: Input file format for TRANSIMS network links — See table for details on columns.

column format description

1 LONG Logical id of the node.
2 DOUBLE x coordinate in Meters.
3 LONG y coordinate in Meters.

Table 5.3: Input file format for network nodes — See table for details on columns.

Accessories (.acc)

This file contains the accessories of the street network. They serve as insertion or deletion point
for vehicles. The format is described in Table 5.5.

Traffic Light Phases (.pha)

This file contains the green and red phases for traffic lights at intersections. The format is described
in Table 5.6. The function of the the phases is described in 2.1.2.

Routeplan

This file contains the routes to be executed during simluation. In contrast to the network element
input files it is not line oriented but contains tokens in a loose format. Each route is started with
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column format description

1 LONG Logical id of the link.
2 LONG Logical id of the source node.
3 LONG Logical id of the destination node.
4 LONG Number of lanes (1..MAX LANES).
5 DOUBLE Length of the link given in Meters. This value is ignored.

The length of the link is computed as the Euclidian dis-
tance between the nodes.

6 LONG Class of the link. see (todo) The class of the link must
be 1 for highways and a value other than 1 for all other
types.

7 DOUBLE Speed limit of the link given in Meters/Second. The
maximum velocity of the CA vehicle is computed from
this using define REAL VELOCITY TO CA VELOCITY in file
TrafficData/CAConfig.h.

8 DOUBLE Free speed of the link given in Meters/Second. This
Value is used for the TRANSIMS link statistics if
a link is (a) the number of vehicles on the link is
larger than one and (b) the density is smaller than
TRANSIMS LINK STAT GRIDLOCK DENSITY=0.05. See
TGridStat.C.

Table 5.4: Input file format for network links — See table for details on columns.

column format description

1 LONG Logical id of the link the accessory resides on.
2 LONG Logical id of the destination node of the link.
3 LONG Logical id of the accessory itself.
4 DOUBLE Distance of the accessory from the source node of the

link given in Meters. The width of the accessory is al-
ways CA DEFAULT V MAX sites. Note that the location of
an accessory may be shifted if it on a distributed link
and at the time to close to the boundary.

Table 5.5: Input file format for network accessories — See table for details on columns.

the ROUTE token. It is followed by variable number of figures.

The format is described in Table 5.7.
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column format description

1 LONG Logical id of the node of the traffic light phase.
2 LONG Logical id of the incoming link for which the phase is

valid.
3 DOUBLE Duration of the green phase in Seconds.
4 DOUBLE Duration of the red phase in Seconds.

Table 5.6: Input file format for traffic light phases — See table for details on columns.

token format description

1 CHAR Constant token ROUTE

2 LONG Departure time step. Time of day in seconds.
3 LONG Route plan flags. This is a bit coded field. bit 0 is

set if the source is an accessory. Otherwise it is a node.
bit 1 is set if the destination is an accessory. Otherwise
it is a node. bit 2 is set if the route can be shortened
during transfer to another CPN.

4 LONG Source id. Depending on the flags this is either an ac-
cessory id or a node id.

5 LONG Destination id. Depending on the flags this is either an
accessory id or a node id.

6 LONG Logical route id.
7 LONG Number of steps.
8 LONG Logical link id of the next step.
9 LONG Time estimate of the next step. The time is estimated

for the end of the link.
...
7+2*steps LONG Logical link id of the last step.
8+2*steps LONG Time estimate of the last step. The time is estimated

for the end of the link.

Table 5.7: Input file format for routes. — See table for details on columns.

5.2.5 Computing

Link Timing Feedback (.edg.time)

This file contains information on the execution time of street links. If present and configured it will
be used for the load balancing of the partitioning algorithm. The format is described in Table 5.8.

Node Timing Feedback (.nod.time)

This file contains information on the execution time of the intersections. If present and configured
it will be used for the load balancing of the partitioning algorithm. The format is described in
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column format description

1 LONG Logical id of the link.
2 DOUBLE Time in Seconds elapsed while processing the link logic.

Table 5.8: Input file format for timing feedback for links. — See table for details on columns.

Table 5.9.

column format description

1 LONG Logical id of the node.
2 DOUBLE Time in Seconds elapsed while processing the node logic.

Table 5.9: Input file format for timing feedback for nodes. — See table for details on columns.

5.3 Iterative Replanning

5.3.1 The Tasks of the Control Script

The simulation suite consists of three major applications and the control script
RunIterativeReplanning.py which triggers the execution of the applications. It generates
a configuration file from a template file which is adapted for each iteration.

In detail, the tasks of the control script for each selected iteration are as follows:

1. Prepare the execution of the planner by providing the TRANSIMS route file of the previous
iteration. If the file had been archived it will be unzipped and moved to the data directory.

Also, the link timing and node timing feedback files will be provided if available from the
previous iteration.

2. Execute the Planner binary which takes a route file as input (in TRANSIMS format), re-
routes a certain fraction of the routes contained therein, and writes a new route file (also in
TRANSIMS format) to disk.

3. GNU-zip the TRANSIMS route file and the TRANSIMS link traveltime file of the previous
iteration and move them to the archive directory.

4. Prepare the execution of the route converter by providing the TRANSIMS route file of the
current iteration. It the file had been archived it will be unzipped and moved to the data

directory.

5. Execute the RouteConverter binary which takes a TRANSIMS route file and clips the routes
to the network which is used in the microsimulation. It converts the routeplans to the
PAMINA format and writes them to disk.
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6. GNU-zip the planner link hit statistics file (if produced) and move it the archive directory.

7. Prepare the execution of the microsimulation by providing the PAMINA route file of the
current iteration and the node timing and link timing feedback files of the previous iteration.
It the route file file had been archived it will be unzipped and moved to the data directory.

8. Execute microsimulation binary ParSim which takes read a plan file in PAMINA format and
executes all routes contained therein.

9. GNU zip (if produced) the following files:

• the PAMINA route file of the current iteration,

• the completed routes statistics file,

• the turn count statistics file,

• the route by origin statistics file.

The script terminates if the requested number of iterations has been executed or any of the appli-
cations returns with a non-zero exit code.

Executing the Control Script

The script is located in the bin subdirectory of the Pamina home directory. It takes the following
command line parameters:

first-iteration=INDEX Sets the index of the first iteration. Defaults to 1.

last-iteration=INDEX Sets the index of the last iteration. Defaults to 999.

skip-planner Skips the execution of the planner during the first iteration. Use this option if you
know that the TRANSIMS route file already exists for the first iteration. Also see parameter
detect-restart-point.

skip-route-converter Skips the execution of the planner during the first iteration. Use this
option if you know that the PAMINA route file already exists for the first iteration. Also see
parameter detect-restart-point.

config-template=FILENAME Sets the name of the configuration template from which the actual
configuration named Config is produced.

working-directory Changes the working directory and all paths relative the working directory.
If not set the directory in which the control script has been called will be used.
TODO/WARNING: this option has not been tested yet.
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detect-restart-point Switch which prompts the control script to look for a good restart point
within the first iteration. Depending on the data files that are available the execution of the
planner and/or the route converter is skipped. The checks are as follows:

• If the TRANSIMS route file for the first iteration is found, the planner will be skipped.

• If the PAMINA route file for the first iteration is found, the route converter will be
skipped.

check-archive Switch which prompts the control script to check the archive directory for GNU
zipped files which are required for the current (usually the first) iteration. If a required file
is found it will be unzipped and moved to the data directory.

redirect-stdout Switch which prompts the control script to redirect both standard outout and
standard error of all applications to logging files in the log subdirectory. For each iteration
there will be one file.

5.3.2 Cook Book

This section explains how to put all the input files and the configuration together and run a
replanning scenario using the control script.

• Think of name for the scenario. In the following it will be referred to as SCENARIO.

• Create a directory which will be your work directory. This directory will be referred to
as WORK DIR. We recommend to make this directory a subdirectory of the scenarios

directory.

• Create a subdirectory of the work directory which will contain most of the data files. The
recommended name is data.

• Create a configuration file in the work directory from the template in the Braess paradox
scenario. The file will be referred to as CONFIG FILE.

• Check where the input files (eg. nodes and links) for the network representation are located
and what the base file name is (e.g. the name without the extension).

• Check where the route file (TRANSIMS format) for the first iteration is. Make a link or a
copy of the initial route file to the data directory. Use a certain naming scheme which includes
the index of the iteration. For example: If the first iteration is number 1 a good name would
be:

WORK DIR/data/plans.TRANSIMS.000
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The suffix 000 represents the iteration of the route file. The TRANSIMS file index is one
lower than the iteration index since it is regarded as the output of the previous iteration.
Also see the setting of RouteConverter.Filename below.

• Edit the configuration file and make required changes. For a list of likely candidates see 5.2.1.

• Double check all other setting in the configuration file.

• Make sure the parallel environment is up and running (see 5.1.2 for PVM and 5.1.3 for MPI).

• cd into the work directory.

• Start the control script:

<PAMINA HOME>/bin/RunIterativeReplanning.py \
--first-iteration=FIRST ITERATION \
--last-iteration=LAST ITERATION \
--config-template=CONFIG FILE

5.4 Output Files

5.4.1 Planner

The following files are generated by the planner.

Router Age Statistics (.age)

The file contains data about the age distribution of the routes. It is reported by class
RouteConverter/TRouteConverter.C.

The file is started by three comment lines:

• max age: The maximum age of all routes (see columns 1 and 2 below).

• average age: The mean age of all routes.

• not yet re-routed: The fraction of all routes that have not been rerouted yet.

The format is described in Table 5.10.

Router Link Hits Statistics (.lhs)

The file contains the link hit statistics in TRANSIMS format. The statistics is stored in class
RouteConverter/TLinkHitStat and reported by class RouteConverter/TRouteConverter.
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column format description

1 LONG Age of this route in routing iterations.
2 LONG Maximum age of all routes minus the age of this route

age.
3 LONG Number of routes with this route age.
4 DOUBLE Fraction of this route age.

Table 5.10: Output file format for the route age statistics. — See table for details on columns.

column format description

1 LONG Logical id of the TRANSIMS link.
2 LONG Logical id of the source node of the link.
3 LONG Start of the time interval. The length of the intervals is

defined by configuration parameter LinkHitBinSize in
group [RouteConverter].

4 LONG Number of ’hits’, e.g. the number of routes crossing this
link in the given time interval.

Table 5.11: Output file format for the TRANSIMS link hit statistics. — See table for details

on columns.

5.4.2 Route Converter

The following output files are produced by the route conversion utility which converts TRANSIMS
routeplans into PAMINA format and trims them to the microsimulation network.

Router Conversion Logging (.log)

This file basically contains warnings about the conversion process. It is logged by class
TrafficData/TRouter. There are no statistics whatsoever.

Typical messages are:

• plan NNN is too short: The number of TRANSIMS links is zero.

• plan NNN does not touch map: The route is completely outside the microsimulation net-
work.

• plan NNN has a single edge (not handled yet): The TRANSIMS route has its origin
and destination on the same link. This is currently not supported by PAMINA.

• no successor node found for NNN in plan NNN: The TRANSIMS route contains an in-
valid node id which cannot be reached from the previous step of the routeplan.
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• inconsistent first edge in plan NNN: The first link of the TRANSIMS plan is inconsis-
tent.

• inconsistent second edge in plan NNN: The second link of the TRANSIMS plan is in-
consistent.

• plan NNN (time HH:MM) outside time window (HH:MM - HH:MM): The routeplan does not
start inside the configured simulation interval.

• no common initial node found for plan NNN: There is no common node for the first two
links of the TRANSIMS route.

• cannot find source accessory NNN in plan NNN: The source accessory of the TRAN-
SIMS route does not exist in the PAMINA network.

• cannot find destination accessory NNN in plan NNN: The destination accessory of the
TRANSIMS route does not exist in the PAMINA network.

Routing Statistics Logging (.cvs)

The file contains general data about the routing process. It is reported by class
RouteConverter/TRouteConverter.

The format is described in Table 5.12.

column format description

1 LONG End of departure interval in seconds.
2 DOUBLE End of departure interval in hours. The fractional por-

tion denotes minutes and seconds.
3 LONG The number of routes with departure times in this in-

terval.

Table 5.12: Output file format for the routing statistics. — See table for details on columns.

5.4.3 Simulation (CA and Route Execution)

Multilane CA Statistics (.mcs)

This file contains the basic statistics about vehicle velocities of the CA model. The first set of
columns contains averages over all lanes. The next sets contain the statistics of specific lanes.

Note this important fact about the lane numbering: lanes are numbered from right to left, meaning
that lane 0 ist always the rightmost lane.

The actual number of lanes reported depends on the maximum number of lanes found in all links of
the traffic network. This may be lower than the maximum number of lanes MAX LANES (see 4.2.3).
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This statistics is stored by class TrafficData/TMultilaneStat.C, collected by class
TrafficData/TCAManager.C and reported by class ParSim/TParSimMaster.C.

The format is described in Table 5.13.

column format description

1 LONG Simulation timestep.
2 LONG Number nveh of all CA sites on all links and all lanes.
3 DOUBLE Density of vehicles on all links and all lanes.
4 DOUBLE Ratio of slow vehicles on all links and all lanes. A slow

vehicle ist a vehicle that has a speed limit of less than
DEFAULT V MAX.

5 LONG Sum of CA velocities of all vehicles on all links and all
lanes.

6 DOUBLE Average CA velocity of all vehicles on all links and all
lanes.

7 LONG Standard deviation of CA velocities of all vehicles on all

links and all lanes.

√

nveh
∑

v2 −
∑

2
v

nveh

8 LONG Flow of all vehicles on all links and all lanes.
∑

v

nSites

i ∗ 7 + 2 LONG Number nsite(i) of all CA sites on lane i of all links.
i ∗ 7 + 3 DOUBLE Density of vehicles on lane i of all links.
i ∗ 7 + 4 DOUBLE Ratio of slow vehicles on lane i of all links. A slow

vehicle ist a vehicle that has a speed limit of less than
DEFAULT V MAX.

i ∗ 7 + 5 LONG Sum of CA velocities of all vehicles on lane i of all links.
i ∗ 7 + 6 DOUBLE Average CA velocity of all vehicles on lane i of all links.
i ∗ 7 + 7 LONG Standard deviation of CA velocities of all vehicles on

lane i of all links.

√

nveh(i)
∑

v2 −
∑

2
v

nveh(i)

i ∗ 7 + 8 LONG Flow of all vehicles on lane i of all links.
∑

v

nSites

Table 5.13: Output file format for multilane CA statistics. — See table for details on columns.

Turn Count Statistics (.tcs)

This file contains turn count statistics of intersections.

This statistics is stored in class TrafficData/TTurnCountStat.C, collected and reported by class
TrafficData/TTrafficSimulator.C.

The format is described in Table 5.14.
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column format description

1 LONG Simulation timestep at which the statistics is written
to file. The counts refer to the interval ending at this
timestep!

2 LONG Logical node id.
3 LONG Logical link id of the incoming link.
4 LONG Logical link id of the outgoing link.
5 LONG Number of vehicle which were moved from the incoming

link to the outgoing link during the statistics interval.

Table 5.14: Output file format for intersection turn count statistics. — See table for details

on columns.

General Statistics (.rts)

The file contains general information about the process of the vehicle routing.

This statistics is stored in class TrafficData/TRoutingStat.C, collected and reported by class
TrafficData/TRouter.C.

The format is described in Table 5.15.

Completed Routes (.crt)

This file contains one entry for each route that has been completed.

The data is collected and store in the route class itself TrafficData/TRouteplan and reported by
class TrafficData/TRouter.C.

The format is described in Table 5.16.

TRANSIMS Link Travel Time Statistics (.tls)

The file contains the link travel time statistics in the original TRANSIMS format. PAMINA,
however, does not collect travel times on links individually. Therefore, instead reporting individual
travel times the router uses the current vehicle velocities to estimate the travel times on the links.
If the number of vehicles on a links is less than TRANSIMS LINK STAT MIN COUNT the router assumes
that the link is basically empty and reports an artificial traveltime computed from the free speed
of the link. In this case the number of reported vehicles is set to 1.

The data is stored in class TrafficData/TGridStat.c, collected and reported by class
TrafficData/TRouter.

The format is described in Table 5.17.
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column format description

1 LONG Simulation timestep at which the statistics is written
to file. The counts refer to the interval ending at this
timestep!

2 LONG Application timestep (simulation wall clock time step).
3 DOUBLE Application time (simulation wall clock time) in hours.

The fractional portion corrsponds to minutes and sec-
onds.

4 LONG Number of vehicles on all links.
5 LONG Number of vehicles (up to this timestep) that have been

inserted without delay, that is within the time slack de-
fined by SP NAME SOURCETIMESLACK.

6 LONG Number of vehicles (up to this timestep) that
have been inserted with delay larger than
SP NAME SOURCETIMESLACK.

7 LONG Number of vehicles (up to this timestep) that have been
deleted (removed) from the simulation after a) having
reached their destination or b) not having reached its
destination (’failed vehicle’).

8 LONG Number of vehicles that are currently pending in sources
waiting to be inserted into links.

9 LONG Number of open routeplan files. This value usually cor-
responds to the number of active CPNs. During the final
stages of a simulation (e.g. during the final few hundred
time steps this number may decrease since some of the
CPNs may have have read all routes from their respec-
tive files.

10 LONG Number of vehicles (up to this time step) that have failed
to reach the destination which was defined by their route
plans. Note that this value is also included in column 7.

Table 5.15: Output file format for the general routing statistics. — See table for details on

columns.

Routes By Origin Statistics (.rbo)

This file contains one entry for each route that has been completed and fulfills the following two
requirements:

• The route did not start at an accessory. TODO: Why?

• The destination lies in a rectangle specified by the simulation configuration.

The data is collected and stored in the route class itself TrafficData/TRouteplan and reported
by class TrafficData/TRouter.C.
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column format description

1 LONG Application timestep at which the the vehicle was sched-
uled to be inserted into the network. This figure is
passed on from the original routeplan entry. The ac-
tual insertion time may have been later due to crowded
sources. See also column 3.

2 LONG Time in seconds that the router estimated for the com-
pletion of this route. This figure is computed from the
original route plan entry as the difference between sched-
uled departure time and the arrival time of the last link
of the route plan. See table 5.7.
If re-routing is active this figure contains the travel time
estimate for the most current re-routing.

3 LONG Application timestep at which the vehicle was actually
inserted into the network.

4 LONG The time (in seconds) the vehicle had to wait before it
was inserted into the network. It is computed as col3 −
col1. This figure is always equal or greater zero.

5 LONG The application time step at which the vehicle was
deleted (removed) from the network.

6 LONG The time (in seconds) that the vehicle spent in the net-
work. It is computed as col5 − col3.

7 LONG The delay (in seconds) that the route plan execution
took longer in simulation that in the router estimate. It
is computed as col6−col2. Negative values denote faster
route execution than estimated.

8 DOUBLE The relative delay of the executed route. It is computed
as col7/col2.

9 LONG The route id. This figure is passed on from the original
route plan entry.

10 LONG The number of re-routings that the vehicle went
through. This figure can only be larger than zero when
the online re-routing is active.

11 LONG Original estimated traveltime. This figure denotes the
first travel time estimate before any re-routing was exe-
cuted.

Table 5.16: Output file format for the completed routes. — See table for details on columns.

The format is described in Table 5.18.
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column format description

1 LONG Sum traveltime of all vehicles on the link.
2 LONG Application timestep. The figures refer to the interval

ending at this timestep!
3 LONG Logical id of the node the link originates from.
4 LONG Sum of the squares of the travel times of all vehicles on

the link.
5 LONG Number of vehicles on the link.
6 LONG Logical id of the link.

Table 5.17: Output file format for the TRANSIMS link statistics. — See table for details on

columns.

column format description

1 LONG Application timestep at which the vehicle was actually
inserted into the network.

2 LONG The application time step at which the vehicle was
deleted (removed) from the network.

3 LONG The time (in seconds) that the vehicle spent in the net-
work. It is computed as col2 − col1.

4 DOUBLE X coordinate of the source given in Meters.
5 DOUBLE Y coordinate of the source given in Meters.
6 DOUBLE X coordinate of the destination given in Meters.
7 DOUBLE Y coordinate of the destination given in Meters.
8 DOUBLE Euclidian distance between source and destination in

Meters.
9 DOUBLE Average velocity of the vehicle during its route. This

figure is computed as col8/col3.
10 DOUBLE Angle [−0.5 . . . 0.5] between source location and desti-

nation location.
11 DOUBLE Sector corresponding to the angle in column 10. The

number of sectors is given by configuration parameter
RouteOriginSectors in section [Router]. This figure
is computed as col10 ∗ RouteOriginSectors.

Table 5.18: Output file format for the routes by origin statistics. — See table for details on

columns.

Rerouting Logging (.rrl)

The file contains data about the online re-routing process. It is reported by class
TrafficData/TRouter.

The format is described in Table 5.19.
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5.4.4 Computing

New Link Timing Feedback (.edg.time.new)

The file contains the link execution times of the simulation. It has the same format as the
Link Timing Feedback. See table 5.8. The only difference is that this file is the output of
the current simulation which will be used as input for the next simulation. The control script
RunIterativeReplanning.py (see 5.3.1) will take care of renaming this file.

New Node Timing Feedback (.nod.time.new)

The file contains the node execution times of the simulation. It has the same format as the
Node Timing Feedback. See table 5.9. The only difference is that this file is the output of
the current simulation which will be used as input for the next simulation. The control script
RunIterativeReplanning.py (see 5.3.1) will take care of renaming this file.

Performance Statistics (.perf)

The file contains data about the performance of the microsimulation. The statistics is collected
and reported by ParSim/TParSimMaster.

The format is described in Table 5.20.

5.5 Graphics

The microsimulation provides a simple X windows graphical output. To use it you have to

• Activate the compilation of the X windows portions of the code by setting XWINDOWS=1 in the
file config/ParSim.Settings. This should be the default.

• Check your local site configuration file config/SITE.Settings for the correct path to your
X windows include and library paths.

• If neccessary rebuild the applications using make clean and make. See 4.2.6.

• Activate the X windows of the microsimulation by setting [ParSim].Graphics = 1; in the
respective configuration file.

• Make sure you have the DISPLAY variable of your environment set correctly.

As soon as the microsimulation starts a window will open showing the whole street network colored
in CPN mode, in which the street segments are color coded by the CPN they reside on. For each
CPN of the parallel machine a specific color is used.

In this window you can use the following keys:
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2 Move the view one fourth of a window down.

8 Move the view one fourth of a window up.

4 Move the view one fourth of a window left.

6 Move the view one fourth of a window right.

– Zoom out by a factor of
√

2.

+ Zoom in by a factor of
√

2.

m Switch to CPN mode in which the street segments are color coded by the CPN they reside on.
For each CPN of the parallel machine a specific color is used.

v Switch to velocity mode in which the street segments are color coded by the average velocity of
the vehicles.

d Switch to density mode in which the street segments are color coded by the density of the
vehicles.

o Switch to object mode in which the location of the vehicles are individually displayed. Note that
this mode generates a lot of network traffic and will slow down the simulation considerably.

q Close the view.

y Switch to delay mode in which the street segments are color coded by the average delay of the
vehicles.

To open a new view just click on an existing view marking the lower left and upper right corners
of the new view.
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column format description

1 LONG Type of the logging entry. Depending on the
type some of the other columns may be missing.
-1 Error while building the shortest path tree

-2 Error while retrieving the shortest path result

0 The re-routing did not take place because the -
vehicle is to close to its destination.

1 Not used.

2 The re-routing was done as a full re-reouting, since
all link travel times from the current location up
to the destination were available.

3 The re-routing was done as a detour, since not
all link travel times from the current location up
to the destination were available. The detour is
computed from the current link to the last link
that still has travel times.

2 LONG Number of links that were still be traversed before the
re-routing was considered.

3 LONG Number of links for which the travel time was estimated.
This is equal to the number of links from the current
location to the last link for which travel times are avail-
able.

4 LONG Number of links replacing the re-routed portion of the
travel plan.

5 LONG Application time step of estimated arrival before the re-
routing. If the vehicle has not been re-routed before this
corresponds to the original planner estimate. Otherwise
it is the estimate of the most previous re-routing.

6 LONG Application time step of estimated arrival at the final
destination after re-routing.

7 LONG Application time step of the estimated arrival based
upon the current link travel times if the vehicle con-
tinued to take its current route.

8 DOUBLE Relative improvement of the re-routing which is com-
puted as col7 − col6.

9 LONG Result of the re-routing consideration:
1 Keep the route. No re-routing is attempted.
2 Route stays the same. Re-routing was attempted

but no alternative route was found which would
improve the remaining travel time.

3 A new route with a better remaining travel time
was found.

Table 5.19: Output file format for the online re-routing logging. — See table for details on

columns.
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column format description

1 LONG Simulation timestep.
2 LONG Application timestep (simulation wall clock time step).
3 DOUBLE Application time (simulation wall clock time).
4 LONG Number of vehicles (objects) on on all links.
5 LONG Wall clock time in seconds required for one simulation

step.
6 DOUBLE Real time ratio (RTR). This figure is computed as the

number of simulation steps per wall clock seconds.
7 DOUBLE Number of million CA site updates per wall clock second

(MUPS).
8 DOUBLE Number of million object updates per wall clock second

(MOSPS).

Table 5.20: Output file format for the simulation performance statistics. — See table for

details on columns.
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[16] J. Freund and T. Pöschel. A statistical approach to vehicular traffic. Physica A, 219(1–2),
1995.

[17] C. Gawron and P. Oertel. The PlayTraffic traffic simulation. Technical report, Traffic Group
at the Center of Parallel Computing, University of Cologne, 1996.

[18] T.-Y. Hu and H.S. Mahmassani. Day-to-day evolution of network flows under real-time infor-
mation and reactive signal control. Transpn. Res.-C, 5 No.1:51–69, 1997.

[19] S. Krauß, P. Wagner, and C. Gawron. A continuous limit of the Nagel-Schreckenberg model.
Phys. Rev. E, 54:3707, 1996.

[20] H.S. Mahmassani, R. Jayakrishnan, and R. Herman. Network traffic flow theory: Microscopic
simulation experiments on supercomputers. Transpn. Res. A, 24A (2):149, 1990.

[21] M. Marathe, D. Anson, M. Stein, M. Rickert, K. Nagel, and C.L. Barrett. Engineering the
route planner for the Dallas case study. In preparation.

[22] T. Nagatani. Effect of traffic accident on jamming transition in traffic-flow model. J. Phys.
A, 26(19):L1015, 1993.

[23] T. Nagatani. Bunching of cars in asymmetric exclusion models for freeway traffic. Phys.Rev.E,
51:992, 1995.

[24] K. Nagel. High–speed Microsimulations of Traffic Flow. PhD thesis, Universität zu Köln, 1994.
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[39] M. Rickert. Parallel Toolbox 1.0. Technical report, Center for Parallel Computing, Cologne,
Germany, and TSA-DO/SA, Los Alamos National Lab, USA, 1995.

[40] M. Rickert. Traffic Simulation on Distributed Memory Computers. PhD thesis, Center for
Parallel Computing, University of Cologne, Germany, 1998.

[41] M. Rickert and K. Nagel. Experiences with a simplified microsimulation of the Dallas/Fort
Worth area. Int.J.Mod.Phys. C, 8 No.3:483–503, 1997.

[42] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour. Two lane traffic simulations using
cellular automata. Physica A, 231:534, 1996.

[43] M. Rickert and P. Wagner. Parallel real-time implementation of large-scale, route-plan-driven
traffic simulation. Int.J.Mod.Phys. C, 7:133–153, 1996.

[44] H.E. Romeijn and R.L. Smith. Parallel algorithms for solving aggregated shortest path prob-
lems. Technical report, University of Michigan, Ann Arbor, MI 48109, USA, November 1997.
Report 93-25.

[45] T. Schwerdtfeger. Makroskopisches Simulationmodell für Schnellstraßennetze mit Berücksich-
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